biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 66:76-82, 2022 | DOI: 10.32615/bp.2021.071

Fullerenol affects maize plants depending on their iron status

N.P. BITYUTSKII1, *, K.L. YAKKONEN1, K.A. LUKINA1, K.N. SEMENOV2
1 Department of Agricultural Chemistry, Saint Petersburg State University, Saint Petersburg, 199034, Russia
2 First Pavlov State Medical University, Saint Petersburg, 197022, Russia

Although fullerene (C60) has attracted great interest as a carbon-based nanomaterial with unique properties, today, little is known about the interaction of its water-soluble derivates, including fullerenol with higher plants. Here, we investigated how fullerenol [C60(OH)22-24] affects Zea mays, as a Strategy II plant, depending on its iron status. Iron deficiency chlorosis is a common nutritional disorder affecting plants. Maize plants were grown hydroponically, either with [+FeII (ferrous) or +FeIII (ferric)] or in Fe-free (-FeII and -FeIII) nutrient solution and with or without a fullerenol supply. Fullerenol affected plants differently depending on their Fe status. The beneficial effects of fullerenol were observed in the FeII-deprived plants, including successful suppression of plant Fe-deficiency chlorosis mainly in the younger (basal and middle) region of the leaf blade. This region expressed more severe chlorosis as compared with the older (apical) region of the leaf blade. These changes were accompanied by a significant increase in leaf active Fe and lowering the root apoplastic Fe, suggesting that fullerenol may enhance Fe mobilization in the roots, helping to alleviate Fe deficiency chlorosis. By contrast, there were no observable effects in the FeIII-deprived plants being significantly lower in the root apoplastic Fe as compared with the FeII-deficient plants. Additionally, fullerenol did not affect the Fe-sufficient plants, irrespective of the Fe species (FeIII-EDTA or FeII-EDTA) used as Fe-sources. Our results provide new evidence for the beneficial role of Fe-fullerenol interactions in the enhancement of gramineous plant tolerance to Fe deficiency conditions, which are one of the major limiting factors for crop production all over the world.

Keywords: chlorosis, fullerenol, iron deficiency alleviation, maize, Zea mays.

Received: August 19, 2021; Revised: November 5, 2021; Accepted: November 16, 2021; Published online: March 31, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
BITYUTSKII, N.P., YAKKONEN, K.L., LUKINA, K.A., & SEMENOV, K.N. (2022). Fullerenol affects maize plants depending on their iron status. Biologia plantarum66, Article 76-82. https://doi.org/10.32615/bp.2021.071
Download citation

Supplementary files

Download file6776_Bityutskii_Suppl.pdf

File size: 402.54 kB

References

  1. Abadía, J., Monge, E., Montañés, L., Heras, L.: Extraction of iron from plant leaves by Fe(II) chelators. - J. Plant Nutr. 7: 777-784, 1984. Go to original source...
  2. Alloway, B.J.: Micronutrients and crop production: an introduction. - In: Alloway, B.J. (ed.): Micronutrient Deficiency in Global Crop Production, Pp. 1-39, Springer, Dordrecht 2008. Go to original source...
  3. Bienfait, H.F., Van den Briel, W., Mesland-Mul, N.T.: Free space iron pools in roots. Generation and mobilization. - Plant Physiol. 78: 596-600, 1985. Go to original source...
  4. Bityutskii, N.P., Yakkonen K.L., Lukina, K.A., Semenov, K.N.: Fullerenol increases effectiveness of foliar iron fertilization in iron-deficient cucumber. - PLoS ONE 15 (5): e0232765, 2020. Go to original source...
  5. Bityutskii, N.P., Yakkonen, K.L., Lukina, K.A., Semenov, K.N., Panova, G.G.: Fullerenol can ameliorate iron deficiency in cucumber grown hydroponically. - J. Plant Growth Regul. 40: 1017-1031, 2021. Go to original source...
  6. Bori¹ev, M., Bori¹ev, I., ®upunski, M., Arsenov, D., Pajeviæ, S., ®ivko, C., Vasin, J., Djordjevic, A.: Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. - PLoS ONE 10: 1-20, 2016. Go to original source...
  7. Carvalhais, L.C., Dennis, P.G., Fedoseyenko, D., Hajirezaei, M.-R., Borriss, R., Von Wirén, N.: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. - Plant Nutr. Soil Sci. 174: 3-11, 2011. Go to original source...
  8. Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S.L., Briat, J.F., Walker, E.L.: Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. - Nature 409: 346-349, 2001. Go to original source...
  9. Fernández, V., Del Río, V., Abadía, J., Abadía, A.: Foliar iron fertilization of peach (Prunus Persica (L.) Basch): effects of iron compounds, surfactants and other adjuvants. - Plant Soil 289: 239-252, 2006. Go to original source...
  10. Gao, J., Wang, Y., Folta, K.M., Krishna, V., Bai, W., Ingeglia, P., Georgieva, A., Nakamura, H., Koopman, B., Moudgil, B.: Polyhydroxy fullerenes (PHFs or fullerenols): beneficial effects on growth and lifespan in diverse biological models. - PLoS ONE 6: e19976, 2011. Go to original source...
  11. Guerinot, M.L. Improving rice yields - ironing out the details. - Nat. Biotechnol. 19: 417-418, 2001. Go to original source...
  12. Hell, R., Stephan, U.W.: Iron uptake, trafficking and homeostasis in plants. - Planta 216: 541-551, 2003. Go to original source...
  13. Khan, M.N., Mobin, M., Abbas, Z.H., Al Mutairi, K.A., Siddiqui, Z.H.: Role of nanomaterials in plants under challenging environments. - Plant Physiol. Biochem. 110: 194-209, 2017. Go to original source...
  14. Kole, C., Kole, P., Randunu, K.M., Choudhary, P., Podila, R., Ke, P.C., Ra, A.M., Marcus, R.K.: Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). - BMC Biotechnol. 13: 3, 2013. Go to original source...
  15. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E.: C60: buckminsterfullerene. - Nature 318: 162-163, 1985. Go to original source...
  16. Langer, R.H.M.: How Grasses Grow. 2nd Ed. - Edward Arnold, London 1979.
  17. Li, S., Zhou, X., Chen, J., Chen, R.: Is there a strategy I iron mechanism in maize? - Plant Signal. Behav. 13: e1161877, 2018. Go to original source...
  18. Liang, C., Xiao, H., Hu, Z., Zhang, X., Hu, J.: Uptake, transportation, and accumulation of C60 fullerene and heavy metal ions (Cd, Cu, and Pb) in rice plants grown in an agricultural soil. - Environ. Pollut. 235: 330-338, 2018. Go to original source...
  19. Lucena, J.J.: Synthetic iron chelates to correct iron deficiency in plants. - In: Barton, L.L., Abadia, J. (ed.): Iron Nutrition in Plants and Rhizospheric Microorganisms. Pp. 103-128. Springer, Dordrecht 2006. Go to original source...
  20. Marschner, H.: Mineral Nutrition of Higher Plants. 2nd Ed. - Academic Press, London 1995.
  21. Nordquist, P.T., Hergert, G.W., Skates, B.A., Compton, W.A., Markwell, J.P.: Phenotypic expression of different maize hybrid genotypes grown on saline-sodic soil. - J. Plant Nutr. 15: 2137-2144, 1992. Go to original source...
  22. Panova, G.G., Ktitorova, I.N., Skobeleva, O.V., Sinjavina, N.G., Charykov, N.A., Semenov, K.N.: Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. - Plant Growth Regul. 79: 309-317, 2016. Go to original source...
  23. Partha, R., Conyers, J.L.: Biomedical applications of functionalized fullerene-based nanomaterials. - Int. J. Nanomed. 4: 261-275, 2009. Go to original source...
  24. Podolsky, N.E., Marcos, M.A., Cabaleiro, D., Semenov, K.N., Lugo, L., Petrov, A.V., Charykov, N.A., Sharoyko, V.V., Vlasov, T.D., Murin, I.V.: Physico-chemical properties of C60(OH)22-24 water solutions: density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. - J. Mol. Liquids 278: 342-355, 2019. Go to original source...
  25. Prylutska, S., Bilyy, R., Overchuk, M., Bychko, A., Andreichenko, K., Stoika, R., Rybalchenko, V., Prylutskyy, Yu., Tsierkezos, N.G., Ritter, U.: Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. - J. Biomed. Nanotechnol. 8: 522-527, 2012. Go to original source...
  26. Repka, J., Jureková, Z.: Heterogeneity of maize leaf blade in photosynthetic characteristics, respiration, mineral nutrient contents, and growth substances. - Biol. Plant. 23: 145-155, 1981. Go to original source...
  27. Roberts, L.A., Pierson, A.J., Panaviene, Z., Walker, E.L.: Yellow Stripe1. Expanded roles for the maize iron-phytosiderophore transporter. - Plant Physiol. 135: 112-120, 2004. Go to original source...
  28. Römheld, V., Marschner, H.: Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. - Plant Physiol. 80: 175-180, 1986. Go to original source...
  29. Seke, M., Petrovic, D., Borovic, M.L., Borisev, I., Novakovic, M., Bakocevic, Z., Djordjevic, A.: Fullerenol/iron nanocomposite diminishes doxorubicin-induced toxicity. - J. Nanoparticle Res. 21: 239, 2019. Go to original source...
  30. Semenov, K.N., Andrusenko, E.V., Charykov, N.A., Litasova, E.V., Panova, G.G., Penkova, A.V., Murin, I.V., Piotrovskiy, L.B.: Carboxylated fullerenes: physico-chemical properties and potential applications. - Progress Solid State Chem. 47-48: 19-36, 2017. Go to original source...
  31. Semenov, K.N., Charykov, N.A., Keskinov, V.N.: Fullerenol synthesis and identification. Properties of the fullerenol water solutions. - J. Chem. Eng. Data 56: 230-239, 2011. Go to original source...
  32. Tiwari, D.K., Dasgupta-Schubert, N., Villaseòor Cendejas, N., Villegas, J., Carreto Montoya, L., Borjas García, S.E.: Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. - Appl. Nanosci. 5: 577-591, 2014. Go to original source...
  33. Ueno, D., Yamaji, N., Ma, J.F.: Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley. - J. exp. Bot. 60: 3513-3520, 2009. Go to original source...
  34. Vose, P.B.: Iron nutrition in plants: a world overview. - J. Plant Nutr. 5: 233-249, 1982. Go to original source...
  35. Wang, P., Lombi, E., Zhao, F.-J., Kopittke, P.: Nanotechnology: a new opportunity in plant sciences. - Trends Plant Sci. 21: 699-712, 2016. Go to original source...
  36. Zaytseva, O., Neumann, G.: Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. - Chem. Biol. Technol. Agr. 3: 17, 2016. Go to original source...
  37. Zhou, P., Huo, X., Zhang, J., Liu, Y., Cheng, F., Cheng, X., Wang, Y., Zhang, Y.: Visible light induced acceleration of Fe(III)/Fe(II) cycles for enhancing phthalate degradation in C60 fullerenol modified Fe(III)/peroxymonosulfate process. - Chem. Eng. J. 387: 124-126, 2020. Go to original source...
  38. Zuo, Y., Zhang, F.: Soil and crop management strategies to prevent iron deficiency in crops. - Plant Soil 339: 83-95, 2011. Go to original source...