Biologia plantarum 66:112-122, 2022 | DOI: 10.32615/bp.2021.077
Genome-wide identification and expression analysis of the AhTrx family genes in peanut
- 1 College of Agriculture, Guangxi University, Nanning, 530004, P.R. China
- 2 Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, P.R. China
- 3 Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, P.R. China
Thioredoxins (Trx) are small multifunctional redox proteins that contain thioredoxin conserved domain and active site WCXXC. The Trx family has an important role in multiple processes, including electron transport, seed germination, redox regulation, biotic and abiotic stresses resistance, etc. Although Trx genes have been extensively characterized in some plants, they have not been reported in peanut until now. The identification of AhTrx genes provides potential candidate genes for studying their effects and regulatory mechanisms in peanut (Arachis hypogaea L.) growth and development, especially under aluminium (Al) stress. It is also helpful to further analyze the Al resistance pathway in plants. Seventy AhTrx genes were identified using a genome-wide search method and conservative domain analysis. Then the basic physicochemical properties, phylogenetic relationship, gene structure, chromosomal localization, and promoter prediction were studied by the bioinformatic methods. Furthermore, the expressions of AhTrx genes under different Al treatment times in two peanut cultivars were tested using a real-time quantitative polymerase chain reaction. Seventy AhTrx genes were identified and characterized. Phylogenetic tree analysis showed that all AhTrx members could be classified into 9 groups with different conserved domains. Motif 1 was found to exist in every sequence, with an active site. Furthermore, the gene structures showed that the AhTrx family was complicated and changeable during evolution. The chromosomal localization indicated that the distribution and density of the Trx family on 20 peanut chromosomes were uneven. Predictive promoter analysis indicated that AhTrx proteins might play a role in phytohormones synthesis and stress response. Finally, the expression patterns of the AhTrx genes showed that every gene was differently expressed under Al treatment in different peanut cultivars, some were obvious, others had no significant difference, some were at a high level, while others were at a low level. This study systematically identifies the Trx gene family in peanut, providing some candidates for further study on its effects and regulatory mechanism under Al stress in peanut.
Keywords: aluminium stress, Arachis hypogea, chromosomal localization, expression analysis, gene structure, peanut, thioredoxins.
Received: July 5, 2021; Revised: December 14, 2021; Accepted: December 16, 2021; Published online: April 16, 2022 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
| Download file | 6768_Li_Suppl.pdf File size: 1.75 MB |
References
- Ancin, M., Larraya, L., Fernandez-San, M.A., Veramendi, J., Burch-Smith, T., Farran, I.: NTRC and thioredoxin f overexpression differentially induces starch accumulation in tobacco leaves - Plants 8: 543, 2019.
Go to original source... - Arsova, B., Hoja, U., Wimmelbacher, M., Greiner, E., Üstün, S., Melzer, M., Petersen, K., Lein, W., Börnke, F.: Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. - Plant Cell 22: 1498-1515, 2010.
Go to original source... - Balsera, M., Uberegui, E., Schürmann, P., Buchanan, B.B.: Evolutionary development of redox regulation in chloroplasts. - Antioxidants Redox Signal. 21: 1327-1355, 2014.
Go to original source... - Benitez-Alfonso, Y., Cilia, M., San, R.A., Thomas, C., Maule, A., Hearn, S., Jackson, D.: Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. - Proc. nat. Acad. Sci. USA 106: 3615-3620, 2009.
Go to original source... - Broin, M., Cuine, S., Eymery, F., Rey, P.: The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. - Plant Cell 14: 1417-1432, 2002.
Go to original source... - Broin, M., Cuine, S., Peltier, G., Rey, P.: Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. - FEBS Lett. 467: 245-248, 2000.
Go to original source... - Buchanan, B.B.: The path to thioredoxin and redox regulation in chloroplasts. - Annu. Rev. Plant Biol. 67: 1-24, 2016.
Go to original source... - Calderon, A., Ortiz-Espin, A., Iglesias-Fernandez, R., Carbonero, P., Pallardo, F.V., Sevilla, F., Jimenez, A.: Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. - Redox Biol. 11: 688-700, 2017.
Go to original source... - Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R.: TBtools: an integrative Toolkit developed for interactive analyses of big biological data. - Mol. Plants 13: 1194-1202, 2020.
Go to original source... - Chibani, K., Wingsle, G., Jacquot, J.P., Gelhaye, E., Rouhier, N.: Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. - Mol. Plants 2: 308-322, 2009.
Go to original source... - Courteille, A., Vesa, S., Sanz-Barrio, R., Cazale, A.C., Becuwe-Linka, N., Farran, I., Havaux, M., Rey, P., Rumeau, D.: Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. - Plant Physiol. 161: 508-520, 2013.
Go to original source... - Da, F.P., Souza, P., Hou, L.Y., Schwab, S., Geigenberger, P., Nunes-Nesi, A., Timm, S., Fernie, A.R., Thormählen, I., Araujo, W.L., Daloso, D.M.: Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. - Plant Cell Environ. 43: 188-208, 2020.
Go to original source... - Florez-Sarasa, I., Obata, T., Del-Saz, N.S.F.N., Reichheld, J.P., Meyer, E.H., Rodriguez-Concepcion, M., Ribas-Carbo, M., Fernie, A.R.: The lack of mitochondrial thioredoxin TRXo1 affects in vivo alternative oxidase activity and carbon metabolism under different light conditions. - Plant Cell Physiol. 60: 2369-2381, 2019.
Go to original source... - Gelhaye, E., Rouhier, N., Gerard, J., Jolivet, Y., Gualberto, J., Navrot, N., Ohlsson, P.I., Wingsle, G., Hirasawa, M., Knaff, D.B., Wang, H., Dizengremel, P., Meyer, Y., Jacquot, J.P.: A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. - Proc. nat. Acad. Sci. USA 101: 14545-14550, 2004.
Go to original source... - Gelhaye, E., Rouhier, N., Navrot, N., Jacquot, J.P.: The plant thioredoxin system. - Cell. Mol. Life Sci. 62: 24-35, 2005.
Go to original source... - Hou, N., You, J., Pang, J., Xu, M., Chen, G., Yang, Z.: The accumulation and transport of abscisic acid in soybean (Glycine max L.) under aluminium stress. - Plant Soil 330: 127-137, 2010.
Go to original source... - Huang, W.J., Oo, T.L., He, H.Y., Wang, A.Q., Zhan, J., Li, C.Z., Wei, S.Q., He, L.F.: Aluminum induces rapidly mitochondria-dependent programmed cell death in Al-sensitive peanut root tips. - Bot. Stud. 55: 67, 2014.
Go to original source... - Ishikawa, K., Yoshimura, K., Harada, K., Fukusaki, E., Ogawa, T., Tamoi, M., Shigeoka, S.: AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling. - Plant Physiol. 152: 2000-2012, 2010.
Go to original source... - Ji, M.G., Park, H.J., Cha, J.Y., Kim, J.A., Shin, G.I., Jeong, S.Y., Lee, E.S., Yun, D.J., Lee, S.Y., Kim, W.Y.: Expression of Arabidopsis thaliana thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance. - Plant Physiol. Biochem. 147: 313-321, 2020.
Go to original source... - Kuang, Y., Guo, X., Guo, A., Ran, X., He, Y., Zhang, Y., Guo, L.: Single-molecule enzymatic reaction dynamics and mechanisms of GPX3 and TRXh9 from Arabidopsis thaliana. - Spectrochim. Acta Part A: mol. biomol. Spectroscopy 243: 118778, 2020.
Go to original source... - Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. - Mol. Biol. Evol. 33: 1870-1874, 2016.
Go to original source... - Laloi, M.: Plant mitochondrial carriers: an overview. - Cell. Mol. Life Sci. 56: 918-944, 1999.
Go to original source... - Laugier, E., Tarrago, L., Courteille, A., Innocenti, G., Eymery, F., Rumeau, D., Issakidis-Bourguet, E., Rey, P.: Involvement of thioredoxin y2 in the preservation of leaf methionine sulfoxide reductase capacity and growth under high light. - Plant Cell Environ. 36: 670-682, 2013.
Go to original source... - Lennartz, K., Plucken, H., Seidler, A., Westhoff, P., Bechtold, N., Meierhoff, K.: HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b(6)f complex in Arabidopsis. - Plant Cell 13: 2539-2551, 2001.
Go to original source... - Li, Y.F., Sang, N., Liu, H., Yu, X.L., Zhang, T.T., Huang, X.Y.: Functional study of cotton thioredoxin gene GhWCRK2-5 involved in flowering regulation. - J. Shihezi Univ (Natur. Sci) 36: 774-782, 2018.
- Meng, L., Wong, J.H., Feldman, L.J., Lemaux, P.G., Buchanan, B.B.: A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. - Proc. nat. Acad. Sci. USA 107: 3900-3905, 2010.
Go to original source... - Meyer, Y., Belin, C., Delorme-Hinoux, V., Reichheld, J.P., Riondet, C.: Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. - Antioxid Redox Signal. 17: 1124-1160, 2012.
Go to original source... - Meyer, Y., Buchanan, B.B., Vignols, F., Reichheld, J.P.: Thioredoxins and glutaredoxins: unifying elements in redox biology. - Annu. Rev. Genet. 43: 335-367, 2009.
Go to original source... - Meyer, Y., Reichheld, J.P., Vignols, F.: Thioredoxins in Arabidopsis and other plants. - Photosynth. Res. 86: 419-433, 2005.
Go to original source... - Meyer, Y., Verdoucq, L., Vignols, F.: Plant thioredoxins and glutaredoxins: identity and putative roles. - Trends Plant Sci. 4: 388-394, 1999.
Go to original source... - Nakano, Y., Kusunoki, K., Hoekenga, O.A., Tanaka, K., Iuchi, S., Sakata, Y., Kobayashi, M., Yamamoto, Y.Y., Koyama, H., Kobayashi, Y.: Genome-wide association study and genomic prediction elucidate the distinct genetic architecture of aluminum and proton tolerance in Arabidopsis thaliana. - Front. Plant Sci. 11: 405, 2020.
Go to original source... - Naranjo, B., Diaz-Espejo, A., Lindahl, M., Cejudo, F.J.: Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. - J. exp. Bot. 67: 1951-1964, 2016.
Go to original source... - Nikkanen, L., Rintamaki, E.: Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. - Biochem. J. 476: 1159-1172, 2019.
Go to original source... - Nuruzzaman, M., Sharoni, A.M., Satoh, K., Al-Shammari, T., Shimizu, T., Sasaya, T., Omura, T., Kikuchi, S.: The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. - Biochem. biophys. Res. Commun. 423: 417-423, 2012.
Go to original source... - Ojeda, V., Perez-Ruiz, J.M., Cejudo, F.J.: The NADPH-dependent thioredoxin reductase C-2-Cys peroxiredoxin redox system modulates the activity of thioredoxin x in Arabidopsis chloroplasts. -Plant Cell Physiol. 59: 2155-2164, 2018.
Go to original source... - Okegawa, Y., Basso, L., Shikanai, T., Motohashi, K.: Cyclic electron transport around PSI contributes to photosynthetic induction with thioredoxin f. - Plant Physiol. 184: 1291-1302, 2020.
Go to original source... - Park, S.K., Jung, Y.J., Lee, J.R., Lee, Y.M., Jang, H.H., Lee, S.S., Park, J.H., Kim, S.Y., Moon, J.C., Lee, S.Y., Chae, H.B., Shin, M.R., Jung, J.H., Kim, M.G., Kim, W.Y., Yun, D.J., Lee, K.O., Lee, S.Y.: Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. - Plant Physiol. 150: 552-561, 2009.
Go to original source... - Qian, H.F., Peng, X.F., Han, X., Ren, J., Zhan, K.Y., Zhu, M.: The stress factor, exogenous ascorbic acid, affects plant growth and the antioxidant system in Arabidopsis thaliana. - Russ. J. Plant Physiol. 61: 467-475, 2014.
Go to original source... - Schnaubelt, D., Queval, G., Dong, Y., Diaz-Vivancos, P., Makgopa, M.E., Howell, G., De Simone, A., Bai, J., Hannah, M.A., Foyer, C.H.: Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. - Plant Cell Environ. 38: 266-279, 2015.
Go to original source... - Schurmann, P., Buchanan, B.B.: The ferredoxin/thioredoxin system of oxygenic photosynthesis. - Antioxidants Redox Signal. 10: 1235-1274, 2008.
Go to original source... - Serrato, A.J., Cejudo, F.J.: Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. - Planta 217: 392-399, 2003.
Go to original source... - Traverso, J.A., Vignols, F., Chueca, A.: Thioredoxin and redox control within the new concept of oxidative signaling. - Plant Signal. Behavior 2: 426-427, 2007.
Go to original source... - Wang, P., Liu, J., Liu, B., Feng, D., Da, Q., Wang, P., Shu, S., Su, J., Zhang, Y., Wang, J., Wang, H.B.: Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. - Plant Physiol. 163: 1710-1728, 2013.
Go to original source... - Wimmelbacher, M., Bornke, F.: Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. - J. exp. Bot. 65: 2405-2413, 2014.
Go to original source... - Yao, S.C., Zhan, J., Pan, C.L., Xiong, W.J., Xiao, D., Wang, Y.L., Shen, H., Wang, A.Q., He, L.F.: Identification and validation of reference genes for real-time qPCR normalization during Al-induced programmed cell death in peanut. - Biol. Plant. 63: 237-246, 2019.
Go to original source... - Yoshida, K., Hara, S., Hisabori, T.: Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. - J. biol. Chem. 290: 14278-14288, 2015.
Go to original source... - Zhang, H., Xu, Z., Huo, Y., Guo, K., Wang, Y., He, G., Sun, H., Li, M., Li, X., Xu, N., Sun, G.: Overexpression of Trx CDSP32 gene promotes chlorophyll synthesis and photosynthetic electron transfer and alleviates cadmium-induced photoinhibition of PSII and PSI in tobacco leaves. - J. Hazardous Materials 398: 122899, 2020.
Go to original source... - Zhuang, W.J., Chen, H., Yang, M., Wang, J.P., Pandey, M.K., et al.: The genome of cultivated peanut provides insight into legume kyryotypes, polyploi evolution and crop domestication. - Nature Genet. 51: 865-876, 2019.
Go to original source...



