biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 66:207-218, 2022 | DOI: 10.32615/bp.2022.023

Overexpression of genes encoding enzymes involved in trehalose synthesis from Caragana korshinskii enhances drought tolerance of transgenic plants

X.-Y. HUANG1, Y.-Y. LI1, T.-J. ZHAO1, W.-Y. LIU1, Y.-N. FENG1, L. WANG1, Y.-C. MA2, X.-F. LIN3, *
1 Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, P.R. China
2 Hohhot Garden Research Institute, Hohhot, 010030, P.R. China
3 State Key Laboratory of Reproductive and Breeding of Grassland and Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, P.R. China

Trehalose, which plays important roles in resistance to abiotic stresses and preservation of biological activity in plants, is synthesized by two key enzymes, trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Therefore, the expressions of the TPS and TPP genes directly affect trehalose synthesis and stress resistance of plants. In this study, CkTPS and CkTPP from Caragana korshinskii were identified, and the role of trehalose synthesis in the adaptation of this desert plant to adverse conditions was investigated. Higher CkTPS and CkTPP expressions were observed in the roots, whereas expressions were much lower in leaves and stems, and their expressions were upregulated under drought stress. Histochemical analyses showed that β-glucuronidase expression driven by the CkTPS and CkTPP promoters was strongly induced by abiotic stresses and phytohormones, such as abscisic acid, gibberellin, methyl jasmonate, and mannitol, which suggests that trehalose synthesis may be regulated by various signaling pathways. To determine the functional mechanism underlying the role of trehalose synthesis in regulating drought response in plants, CkTPS and CkTPP were introduced into Arabidopsis. Compared to wild-type (WT) plants, these transgenic plants showed higher germination rate, survival, less damage, better shoot growth, and longer roots under drought stress. Moreover, transgenic plants had a significantly higher content of proline, chlorophyll, trehalose, and activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and lower malondialdehyde (MDA) content than WT controls. Double-transgenic plants carrying CkTPS and CkTPP showed better growth and stronger drought tolerance than either single transgenic plant line. These results provide a theoretical and experimental basis for further understanding the function and regulatory mechanism of CkTPS and CkTPP, as well as the possibility of their application for improving drought tolerance in crops through genetic engineering.

Keywords: Caragana korshinskii, drought tolerance, transgenic Arabidopsis, trehalose-6-phosphate phosphatase, trehalose-6-phosphate synthase.

Received: December 13, 2021; Revised: May 1, 2022; Accepted: May 10, 2022; Published online: September 4, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HUANG, X.-Y., LI, Y.-Y., ZHAO, T.-J., LIU, W.-Y., FENG, Y.-N., WANG, L., MA, Y.-C., & LIN, X.-F. (2022). Overexpression of genes encoding enzymes involved in trehalose synthesis from Caragana korshinskii enhances drought tolerance of transgenic plants. Biologia plantarum66, Article 207-218. https://doi.org/10.32615/bp.2022.023
Download citation

Supplementary files

Download file6837_Huang_Suppl.pdf

File size: 442.52 kB

References

  1. Acosta-Pérez, P., Camacho-Zamora, B.D., Espinoza-Sánchez, E.A., Gutiérrez-Soto, G., Zavala-García, F., Abraham-Juárez, M.J., Sinagawa-García, S.R.: Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes and analysis of its differential expression in maize (Zea mays) seedlings under drought stress. - Plants 9: 315, 2020. Go to original source...
  2. Ahammed, G.J., Li, X., Wan, H., Zhou, G., Cheng, Y.: SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. - Scientia Hort. 270: 109444, 2020. Go to original source...
  3. Akram, N.A., Irfan, I., Ashraf, M.: Trehalose-induced modulation of antioxidative defence system in radish (Raphanus sativus L.) plants subjected to water-deficit conditions. - Agrochimica 60: 186-198, 2016. Go to original source...
  4. Avonce, N., Mendoza-Vargas, A., Morett, E., Iturriaga, G.: Insights on the evolution of trehalose biosynthesis. - BMC evol. Biol. 6: 109, 2006. Go to original source...
  5. Baker, N.R., Harbinson, J., Kramer, D.M.: Determining the limitations and regulation of photosynthetic energy transduction in leaves. - Plant Cell Environ. 30: 1107-1125, 2007. Go to original source...
  6. Cabib, E., Leloir, L.F.: The biosynthesis of trehalose phosphate. - J. biol. Chem. 231: 259, 1958. Go to original source...
  7. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. - Plant J. 16: 735-743, 1998. Go to original source...
  8. Cui, G., Zhao, X., Liu, S., Sun, F., Zhang, C., Xi, Y.: Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. - Plant Physiol. Biochem. 118: 138-149, 2017. Go to original source...
  9. D±browski, P., Baczewska-D±browska, A.H., Kalaji, H.M., Goltsev, V., Paunov, M., Rapacz, M., Wójcik-Jagla, M., Pawlu¶kiewicz, B., B±ba, W., Brestic, M.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors 19: 2736, 2019. Go to original source...
  10. Dan, Y., Niu, Y., Wang, C., Yan, M., Liao, W.: Genome-wide identification and expression analysis of the trehalose-6-phosphate synthase (TPS) gene family in cucumber (Cucumis sativus L.). - Peer J. 9: e11398, 2021. Go to original source...
  11. Delorge, I., Janiak, M., Carpentier, S., Van Dijck, P.: Fine-tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. - Front. Plant Sci. 5: 147, 2014. Go to original source...
  12. Elbein, A.D., Pan, Z.T., Pastuszak, I., Carroll, D.: New insights on trehalose: a multifunctional molecule. - Glycobiology 13: 17R-27R, 2003. Go to original source...
  13. Farooq, A., Bukhari, S.A., Akram, N.A., Ashraf, M., Wijaya, L., Alyemeni, M.N., Ahmad, P.: Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). - Plants 9: 104, 2020. Go to original source...
  14. Farouk, S., Qados, A.: Osmotic adjustment and yield of cowpea in response to drought stress and chitosan. - Indian J. appl. Res. 3: 1-6, 2011. Go to original source...
  15. Fernandez, O., Béthencourt, L., Quero, A., Sangwan, R.S., Clément, C..: Trehalose and plant stress responses: friend or foe? - Trends Plant Sci. 15: 409-417, 2010. Go to original source...
  16. Gao, Y., Yang, X., Yang, X., Zhao, T., An, X., Chen, Z.: Characterization and expression pattern of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase gene families in Populus. - Int. J. biol. Macromol. 187: 9-23, 2021. Go to original source...
  17. Ge, L.-F., Chao, D.-Y., Shi, M., Zhu, M.-Z., Gao, J.-P., Lin, H.-X.: Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress-responsive genes. - Planta 228: 191-201, 2008. Go to original source...
  18. Han, B., Fu, L., Zhang, D., He, X., Chen, Q., Peng, M., Zhang, J.: Interspecies and intraspecies analysis of trehalose contents and the biosynthesis pathway gene family reveals crucial roles of trehalose in osmotic-stress tolerance in cassava. - Int. J. mol. Sci. 17: 1077, 2016. Go to original source...
  19. Hu, X., Wu, Z.-D., Luo, Z.-Y., Burner, D.M., Pan, Y.-B., Wu, C.-W.: Genome-wide analysis of the trehalose-6-phosphate synthase (TPS) gene family and expression profiling of ScTPS genes in sugarcane. - Agronomy 10: 969, 2020. Go to original source...
  20. Hussain, H.A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao, C., Wang, L.: Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. - Sci. Rep. 9: 3890, 2019. Go to original source...
  21. Jia, G.-M., Liu, B.-R., Wang, G., Zhang, B.: The microbial biomass and activity in soil with shrub (Caragana korshinskii K.) plantation in the semi-arid loess plateau in China. - Eur. J. Soil Biol. 46: 6-10, 2010. Go to original source...
  22. Karim, S., Aronsson, H., Ericson, H., Pirhonen, M., Leyman, B., Welin, B., Mäntylä, E., Palva, E.T., Van Dijck, P., Holmström, K.-O.: Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. - Plant mol. Biol. 64: 371-386, 2007. Go to original source...
  23. Kaya, C., ªenbayram, M., Akram, N.A., Ashraf, M., Alyemeni, M.N., Ahmad, P.: Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). - Sci. Rep. 10: 6432, 2020. Go to original source...
  24. Kosar, F., Akram, N.A., Ashraf, M., Ahmad, A., Ahmad, P.: Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. - Physiol. Plant. 172: 317-333, 2021. Go to original source...
  25. Kosar, F., Akram, N.A., Sadiq, M., Al-Qurainy, F., Ashraf, M.: Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. - J. Plant Growth Regul. 38: 606-618, 2019. Go to original source...
  26. Leyman, B., Dijck, P.V., Thevelein, J.M.: An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. - Trends Plant Sci. 6: 510-513, 2001. Go to original source...
  27. Li, H.-W., Zang, B.-S., Deng, X.-W., Wang, X.-P.: Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. - Planta 234: 1007-1018, 2011. Go to original source...
  28. Lin, M., Jia, R., Li, J., Zhang, M., Chen, H., Zhang, D., Zhang, J., Chen, X.: Evolution and expression patterns of the trehalose-6-phosphate synthase gene family in drumstick tree (Moringa oleifera Lam.). - Planta 248: 999-1015, 2018. Go to original source...
  29. Lin, Q., Wang, S., Yihang, D., Wang, J., Wang, K.: Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. - J. exp. Bot. 71: 4285-4297, 2020. Go to original source...
  30. Lin, Q., Yang, J., Wang, Q., Zhu, H., Wang, K.: Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. - BMC Plant Biol. 19: 381, 2019. Go to original source...
  31. Lunn, J.E., Delorge, I., Figueroa, C.M., Van Dijck, P., Stitt, M.: Trehalose metabolism in plants. - Plant J. 79: 544-567, 2014. Go to original source...
  32. Lyu, J.I., Min, S.R., Lee, J.H., Lim, Y.H., Kim, J.-K., Bae, C.-H., Liu, J.R.: Overexpression of a trehalose-6-phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato. - Plant Cell Tissue Organ Cult. 112: 257-262, 2013. Go to original source...
  33. McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? - New Phytol. 178: 719-739, 2010. Go to original source...
  34. Miranda, J.A., Avonce, N., Suárez, R., Thevelein, J.M., Van Dijck, P., Iturriaga, G.: A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. - Planta 226: 1411-1421, 2007. Go to original source...
  35. Møller, I.M., Jensen, P.E., Hansson, A.: Oxidative modifications to cellular components in plants. - Annu. Rev. Plant Biol. 58: 459-481, 2007. Go to original source...
  36. Parveen, A., Liu, W., Hussain, S., Asghar, J., Perveen, S., Xiong, Y.: Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. - Plants 8: 431, 2019. Go to original source...
  37. Pilon-Smits, E.A.H., Terry, N., Sears, T., Kim, H., Zayed, A., Hwang, S., Van Dun, K., Voogd, E., Verwoerd, T.C., Krutwagen, R.W.H.H., Goddijn, O.J.M.: Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. - J. Plant Physiol. 152: 525-532, 1998. Go to original source...
  38. Raja, V., Qadir, S.U., Alyemeni, M.N., Ahmad, P.: Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. - 3 Biotech 10: 208, 2020. Go to original source...
  39. Romero, C., Bellés, J.M., Vayá, J.L., Serrano, R., Culiáñez-Macià, F.A.: Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. - Planta 201: 293-297, 1997. Go to original source...
  40. Sohag, A.A.M., Tahjib-Ul-Arif, M., Brestic, M., Afrin, S., Sakil, M.A., Hossain, M.T., Hossain, M.A., Hossain, M.A.: Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. - Plant Soil Environ. 66: 7-13, 2020. Go to original source...
  41. Song, J., Mao, H., Cheng, J., Zhou, Y., Chen, R., Zeng, L., Li, H., Wang, Y.: Identification of the trehalose-6-phosphate synthase gene family in Medicago truncatula and expression analysis under abiotic stresses. - Gene 787: 145641, 2021. Go to original source...
  42. Talebi, R.: Effect of exogenous foliar salicylic acid application on sesame (Sesamum indicum L.) morphological characters, seed yield and oil content under different irrigation regimes. - Int. J. Biosci. 5: 70-74, 2014. Go to original source...
  43. Tiwari, S., Lata, C., Chauhan, P.S., Prasad, V., Prasad, M.: A Functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. - Curr. Genomics 18: 469-482, 2017. Go to original source...
  44. Vogel, G., Aeschbacher, R.A., Müller, J., Boller, T., Wiemken, A.: Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. - Plant J. 13: 673-683, 1998. Go to original source...
  45. Wang, P., Lei, X., Lü, J., Gao, C.: Overexpression of the ThTPS gene enhanced salt and osmotic stress tolerance in Tamarix hispida. - J. Forest. Res. 33: 299-308, 2022. Go to original source...
  46. Xu, Y., Wang, Y., Mattson, N., Yang, L., Jin, Q.: Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress. - BMC Genomics 18: 926, 2017. Go to original source...
  47. Yang, H.L., Liu, Y.J., Wang, C.L., Zeng, Q.Y., Natarajan, K.: Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice. - PloS ONE 7: e42438-e38, 2012. Go to original source...
  48. Yang, Y., Yao, Y., Li, J., Zhang, J., Zhang, X., Hu, L., Ding, D., Bakpa, E.P., Xie, J.: Trehalose alleviated salt stress in tomato by regulating ROS metabolism, photosynthesis, osmolyte synthesis, and trehalose metabolic pathways. - Front. Plant Sci. 13: 772948, 2022. Go to original source...
  49. Yang, Y., Ma, K., Zhang, T., Li, L., Wang, J., Cheng, T., Zhang, Q.: Characteristics and expression analyses of trehalose-6-phosphate synthase family in Prunus mume reveal genes involved in trehalose biosynthesis and drought response. - Biomolecules 10: 1358, 2020. Go to original source...
  50. Yu, Z., Zhao, C., Zhang, G., Teixeira da Silva, J.A., Duan, J.: Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in Linalool biosynthesis. - Int. J. mol. Sci. 21: 5419, 2020. Go to original source...