biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 66:240-254, 2022 | DOI: 10.32615/bp.2022.030

Transcriptomic and proteomic mechanisms underlying cold tolerance in plants

K. JAMSHIDI GOHARRIZI1, 2, *, S. KARAMI3, *, T. BASAKI3, M. MOSTAFAEI DEHNAVI4, M.A. NEJAT3, M.M. MOMENI2, G. MERU5
1 Department of Plant Pathology, University of California, Davis, CA 95616, USA
2 Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, 8915813135, Iran
3 Department of Agriculture, Payame Noor University (PNU), Tehran 19395-4697, Iran
4 Department of Plant Sciences, University of California, Davis, CA 95616, USA
5 Horticultural Sciences Department and the Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA

Abiotic stress is one of the major challenges facing crop production globally. Abiotic stress resulting from low temperature is a major limitation to crop production, especially in the temperate regions of the world. Cold stress not only influence crop development and reduce yields, but also curtail the efficient distribution of agricultural products worldwide. An understanding of the molecular mechanisms underlying cold stress tolerance is important for the development of strategies to manage crop loss and improve yield. In this review, we explore the major molecular mechanisms involved in plant cold tolerance, including recent discoveries on interrelated gene networks and regulatory mechanisms for cold stress adaptation in crops. Further, we highlight the role of proteomics in the discovery of proteins involved in key signaling pathways, including late embryogenesis-abundant proteins, antifreeze proteins, cold-regulated proteins, heat shock proteins, and pathogenesis-related proteins. The role of these proteins, and their relative abundance in physiological-biochemical reactions, are discussed and key candidate proteins for plant genetic enhancement are suggested.

Keywords: molecular mechanisms; proteomics; physiological-biochemical reactions; plant cold stress, regulatory mechanisms.

Received: May 19, 2022; Revised: June 30, 2022; Accepted: July 14, 2022; Published online: October 3, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
JAMSHIDI GOHARRIZI, K., KARAMI, S., BASAKI, T., MOSTAFAEI DEHNAVI, M., NEJAT, M.A., MOMENI, M.M., & MERU, G. (2022). Transcriptomic and proteomic mechanisms underlying cold tolerance in plants. Biologia plantarum66, Article 240-254. https://doi.org/10.32615/bp.2022.030
Download citation

References

  1. Almeida-Silva, F., Venancio, T.M.: Pathogenesis-related protein 1 (PR-1) genes in soybean: Genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. - Gene 809: 146013, 2022. Go to original source...
  2. Amara, I., Capellades, M., Ludevid, M.D., Pages, M., Goday, A.: Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. - J. Plant Physiol. 170: 864-873, 2013. Go to original source...
  3. An, F., Li, G., Li, Q.X., Li, K., Carvalho, L.J., Ou, W., Chen, S.: The comparatively proteomic analysis in response to cold stress in cassava plantlets. - Plant mol. Biol. Rep. 34: 1095-1110, 2016. Go to original source...
  4. Anuradha, C., Chandrasekar, A., Backiyarani, S., Thangavelu, R., Giribabu, P., Uma, S.: Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. - Gene 821: 146334, 2022. Go to original source...
  5. Arora, R., Agarwal, P., Ray, S., Singh, A.K., Singh, V.P., Tyagi, A.K., Kapoor, S.: MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. - BMC Genomics 8: 242, 2007. Go to original source...
  6. Artlip, T.S., Wisniewski, M.E., Arora, R., Norelli, J.L.: An apple rootstock overexpressing a peach CBF gene alters growth and flowering in the scion but does not impact cold hardiness or dormancy. - Hort. Res. 3: 1-9, 2016. Go to original source...
  7. Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C., Thomashow, M.F.: Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. - Proc nat. Acad. Sci. USA 93: 13404-13409, 1996. Go to original source...
  8. Atici, Ö., Nalbantoǧlu, B.: Antifreeze proteins in higher plants. - Phytochemistry 64: 1187-1196, 2003. Go to original source...
  9. Badawi, M., Danyluk, J., Boucho, B., Houde, M., Sarhan, F.: The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. - Mol. Genet. Genom. 277: 533-554, 2007. Go to original source...
  10. Badawi, M., Reddy, Y.V., Agharbaoui, Z., Tominaga, Y., Danyluk, J., Sarhan, F., Houde, M.: Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. - Plant Cell Physiol. 49: 1237-1249, 2008. Go to original source...
  11. Båga, M., Chodaparambil, S.V., Limin, A.E., Pecar, M., Fowler, D.B., Chibbar, R.N.: Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. - Funct. Integr. Genomics 7: 53-68, 2007. Go to original source...
  12. Baker, S.S., Wilhelm, K.S., Thomashow, M.F.: The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. - Plant mol. Biol. 24: 701-713, 1994. Go to original source...
  13. Battaglia, M., Covarrubias, A.A.: Late embryogenesis abundant (LEA) proteins in legumes. - Front. Plant Sci. 4: 190, 2013. Go to original source...
  14. Bertrand, A., Bipfubusa, M., Castonguay, Y., Rocher, S., Szopinska-Morawska, A., Papadopoulos, Y., Renaut, J.: A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). - BMC Plant Biol. 16: 1-18, 2016. Go to original source...
  15. Bose, J., Pottosin, I., Shabala, S.S.S., Palmgren, M.G., Shabala, S.: Calcium efflux systems in stress signaling and adaptation in plants. - Front. Plant Sci. 2: 85, 2011. Go to original source...
  16. Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martínez, J., Alberdi, M., Close, T.J., Corcuera, L.J.: Cryoprotective activity of a cold-induced dehydrin purified from barley. - Physiol. Plant. 118: 262-269, 2003. Go to original source...
  17. Bray, E.A.: Molecular responses to water deficit. - Plant Physiol. 103: 1035, 1993. Go to original source...
  18. Campoli, C., Matus-Cádiz, M.A., Pozniak, C.J., Cattivelli, L., Fowler, D.B.: Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. - Mol. Genet. Genom. 282: 141-152, 2009. Go to original source...
  19. Cao, J., Lv, Y., Li, X.: Interspaced repeat sequences confer the regulatory functions of AtXTH10, important for root growth in Arabidopsis. - Plants 8: 130, 2019. Go to original source...
  20. Castiglioni, P., Warner, D., Bensen, R.J., Anstrom, D.C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., D'Ordine, R.: Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. - Plant Physiol. 147: 446-455, 2008. Go to original source...
  21. Chan, Z., Wang, Y., Cao, M., Gong, Y., Mu, Z., Wang, H., Hu, Y., Deng, X., He, X.J., Zhu, J.K.: RDM 4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. - New Phytol. 209: 1527-1539, 2016. Go to original source...
  22. Chen, L., Madura, K.: Rad23 promotes the targeting of proteolytic substrates to the proteasome. - Mol. cell. Biol. 22: 4902-4913, 2002. Go to original source...
  23. Chen, L., Zhang, Y., Ren, Y., Xu, J., Zhang, Z., Wang, Y.: Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. - Biochem. biophys. Res. Commun. 417: 892-896, 2012. Go to original source...
  24. Chen, T., Shabala, S., Niu, Y., Chen, Z.-H., Shabala, L., Meinke, H., Venkataraman, G., Pareek, A., Xu, J., Zhou, M.: Molecular mechanisms of salinity tolerance in rice. - Crop J. 9: 506-520, 2021. Go to original source...
  25. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.-H., Hong, X., Agarwal, M., Zhu, J.-K.: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. - Genes Dev. 17: 1043-1054, 2003. Go to original source...
  26. Chinnusamy, V., Zhu, J., Zhu, J.-K.: Cold stress regulation of gene expression in plants. - Trends Plant Sci. 12: 444-451, 2007. Go to original source...
  27. Close, T.J.: Dehydrins: a commonalty in the response of plants to dehydration and low temperature. - Physiol. Plant. 100: 291-296, 1997. Go to original source...
  28. Crosatti, C., Pagani, D., Cattivelli, L., Stanca, A., Rizza, F.: Effects of growth stage and hardening conditions on the association between frost resistance and the expression of the cold-induced protein COR14b in barley. - Environ. exp. Bot. 62: 93-100, 2008. Go to original source...
  29. Da Maia, L.C., Cadore, P.R., Benitez, L.C., Danielowski, R., Braga, E.J., Fagundes, P.R., Magalhães, A.M., De Oliveira, A.C.: Transcriptome profiling of rice seedlings under cold stress. - Funct. Plant Biol. 44: 419-429, 2017. Go to original source...
  30. Denesik, T.J.: Quantitative expression analysis of four low-temperature-tolerance-associated genes during cold acclimation in wheat (Triticum aestivum L.). University of Saskatchewan, 2007.
  31. Dhillon, T., Pearce, S.P., Stockinger, E.J., Distelfeld, A., Li, C., Knox, A.K., Vashegyi, I., Vágújfalvi, A., Galiba, G., Dubcovsky, J.: Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. - Plant Physiol. 153: 1846-1858, 2010. Go to original source...
  32. Ding, C., Lei, L., Yao, L., Wang, L., Hao, X., Li, N., Wang, Y., Yin, P., Guo, G., Yang, Y.: The involvements of calcium-dependent protein kinases and catechins in tea plant [Camellia sinensis (L.) O. Kuntze] cold responses. - Plant Physiol. Biochem. 143: 190-202, 2019. Go to original source...
  33. Doherty, C.J., Van Buskirk, H.A., Myers, S.J., Thomashow, M.F.: Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. - Plant Cell 21: 972-984, 2009. Go to original source...
  34. Du, H., Wu, N., Fu, J., Wang, S., Li, X., Xiao, J., Xiong, L.: A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. - J. exp. Bot. 63: 6467-6480, 2012. Go to original source...
  35. Eckardt, N.A.: CAMTA proteins: a direct link between calcium signals and cold acclimation? - Plant Cell 21: 697-697, 2009. Go to original source...
  36. Fowler, D., Limin, A.: Interactions among factors regulating phenological development and acclimation rate determine low-temperature tolerance in wheat. - Ann. Bot. 94: 717-724, 2004. Go to original source...
  37. Fowler, D.B., Breton, G., Limin, A.E., Mahfoozi, S., Sarhan, F.: Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. - Plant Physiol. 127: 1676-1681, 2001. Go to original source...
  38. Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. - Plant Cell 14: 1675-1690, 2002. Go to original source...
  39. Fu, L., Ding, Z., Han, B., Hu, W., Li, Y., Zhang, J.: Physiological investigation and transcriptome analysis of polyethylene glycol (PEG)-induced dehydration stress in cassava. - Int. J. mol. Sci. 17: 283, 2016. Go to original source...
  40. Fursova, O.V., Pogorelko, G.V., Tarasov, V.A.: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. - Gene 429: 98-103, 2009. Go to original source...
  41. Gao, J.P., Chao, D.Y., Lin, H.X.: Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. - J. integr. Plant Biol. 49: 742-750, 2007. Go to original source...
  42. Garcia-Bañuelos, M.L., Gardea, A.A., Winzerling, J.J., Vazquez-Moreno, L.: Characterization of a midwinter-expressed dehydrin (DHN) gene from apple trees (Malus domestica). - Plant mol. Biol. Rep. 27: 476-487, 2009. Go to original source...
  43. Gery, C., Zuther, E., Schulz, E., Legoupi, J., Chauveau, A., McKhann, H., Hincha, D.K., Téoulé, E.: Natural variation in the freezing tolerance of Arabidopsis thaliana: effects of RNAi-induced CBF depletion and QTL localisation vary among accessions. - Plant Sci. 180: 12-23, 2011. Go to original source...
  44. Ghildiyal, M., Zamore, P.D.: Small silencing RNAs: an expanding universe. - Nat. Rev. Genet. 10: 94-108, 2009. Go to original source...
  45. Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F.: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. - Plant J. 16: 433-442, 1998. Go to original source...
  46. Gopal, C., Chanakya, N.K.: Induction of a C-repeat binding factor gene by calcium to resist low temperature stress in rice. - Int. J. Plant Physiol. Biochem. 4: 142-145, 2012. Go to original source...
  47. Goyal, R.K., Fatima, T., Topuz, M., Bernadec, A., Sicher, R., Handa, A.K., Mattoo, A.K.: Pathogenesis-related protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes. - Front. Plant Sci. 7: 901, 2016. Go to original source...
  48. Graether, S.P., Boddington, K.F.: Disorder and function: a review of the dehydrin protein family. - Front. Plant Sci. 5: 576, 2014. Go to original source...
  49. Griffith, M., Lumb, C., Wiseman, S.B., Wisniewski, M., Johnson, R.W., Marangoni, A.G.: Antifreeze proteins modify the freezing process in planta. - Plant Physiol. 138: 330-340, 2005. Go to original source...
  50. Griffith, M., Yaish, M.W.: Antifreeze proteins in overwintering plants: a tale of two activities. - Trends Plant Sci. 9: 399-405, 2004. Go to original source...
  51. Guddimalli, R., Somanaboina, A.K., Palle, S.R., Edupuganti, S., Kummari, D., Palakolanu, S.R., Naravula, J., Gandra, J., Qureshi, I.A., Marka, N.: Overexpression of RNA-binding bacterial chaperones in rice leads to stay-green phenotype, improved yield and tolerance to salt and drought stresses. - Physiol. Plant. 173: 1351-1368, 2021. Go to original source...
  52. Guo, X., Zhang, L., Dong, G., Xu, Z., Li, G., Liu, N., Wang, A., Zhu, J.: A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum). - Plant Sci. 289: 110246, 2019. Go to original source...
  53. Guo, X., Zhang, L., Zhu, J., Liu, H., Wang, A.: Cloning and characterization of SiDHN, a novel dehydrin gene from Saussurea involucrata Kar. et Kir. that enhances cold and drought tolerance in tobacco. - Plant Sci. 256: 160-169, 2017. Go to original source...
  54. Gupta, R., Deswal, R.: Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. - J. Proteome Res. 11: 2684-2696, 2012. Go to original source...
  55. Gupta, R., Deswal, R.: Antifreeze proteins enable plants to survive in freezing conditions. - J. Biosci. 39: 931-944, 2014. Go to original source...
  56. Gupta, S.C., Sharma, A., Mishra, M., Mishra, R.K., Chowdhuri, D.K.: Heat shock proteins in toxicology: how close and how far? - Life Sci. 86: 377-384, 2010. Go to original source...
  57. Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., Masmoudi, K.: Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. - Plant Signal. Behav. 6: 1503-1509, 2011. Go to original source...
  58. Hannah, M.A., Heyer, A.G., Hincha, D.K.: A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. - PLoS Genet. 1: e26, 2005. Go to original source...
  59. Hao, X., Wang, B., Wang, L., Zeng, J., Yang, Y., Wang, X.: Comprehensive transcriptome analysis reveals common and specific genes and pathways involved in cold acclimation and cold stress in tea plant leaves. - Sci. Hort. 240: 354-368, 2018. Go to original source...
  60. Hara, M.: The multifunctionality of dehydrins: an overview. - Plant Signal. Behav. 5: 503-508, 2010. Go to original source...
  61. Hara, M., Fujinaga, M., Kuboi, T.: Radical scavenging activity and oxidative modification of citrus dehydrin. - Plant Physiol. Biochem. 42: 657-662, 2004. Go to original source...
  62. Hara, M., Fujinaga, M., Kuboi, T.: Metal binding by citrus dehydrin with histidine-rich domains. - J. exp. Bot. 56: 2695-2703, 2005. Go to original source...
  63. Hara, M., Terashima, S., Fukaya, T., Kuboi, T.: Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. - Planta 217: 290-298, 2003. Go to original source...
  64. Hasanuzzaman, M., Shabala, L., Brodribb, T.J., Zhou, M., Shabala, S.: Understanding physiological and morphological traits contributing to drought tolerance in barley. - J Agron. Crop Sci. 205: 129-140, 2019. Go to original source...
  65. Heidarvand, L., Amiri, R.M.: What happens in plant molecular responses to cold stress? - Acta Physiol. Plant. 32: 419-431, 2010. Go to original source...
  66. Hon, W.-C., Griffith, M., Mlynarz, A., Kwok, Y.C., Yang, D.S.: Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. - Plant Physiol. 109: 879-889, 1995. Go to original source...
  67. Houde, M., Dallaire, S., N'Dong, D., Sarhan, F.: Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. - Plant Biotechnol. J. 2: 381-387, 2004. Go to original source...
  68. Hu, Y., Wu, Q., Sprague, S.A., Park, J., Oh, M., Rajashekar, C., Koiwa, H., Nakata, P.A., Cheng, N., Hirschi, K.D.: Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. - Hort. Res. 2: 1-11, 2015. Go to original source...
  69. Huang, T., Duman, J.G.: Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. - Plant mol. Biol. 48: 339-350, 2002. Go to original source...
  70. Hughes, M.A., Dunn, M.A.: The molecular biology of plant acclimation to low temperature. - J. exp. Bot. 47: 291-305, 1996. Go to original source...
  71. Hundertmark, M., Hincha, D.K.: LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. - BMC Genomics 9: 1-22, 2008. Go to original source...
  72. Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. - Plant Cell Physiol. 47: 141-153, 2006. Go to original source...
  73. Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. - Plant Physiol. 127: 910-917, 2001. Go to original source...
  74. Jain, S., Kumar, D., Jain, M., Chaudhary, P., Deswal, R., Sarin, N.B.: Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco. - Plant Cell Tissue Organ Cult. 109: 19-31, 2012. Go to original source...
  75. Jamshidi Goharrizi, K., Amirmahani, F., Salehi, F.: Assessment of changes in physiological and biochemical traits in four pistachio rootstocks under drought, salinity and drought + salinity stresses. - Physiol. Plant. 168: 973-989, 2020a. Go to original source...
  76. Jamshidi Goharrizi, K., Baghizadeh, A., Kalantar, M., Fatehi, F.: Assessment of changes in some biochemical traits and proteomic profile of UCB-1 pistachio rootstock leaf under salinity stress. - J. Plant Growth Regul. 39: 608-630, 2020b. Go to original source...
  77. Jamshidi Goharrizi, K., Baghizadeh, A., Kalantar, M., Fatehi, F.: Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. - Sci. Hort. 261: 108970, 2020c. Go to original source...
  78. Jamshidi Goharrizi, K., Moosavi, S.S., Amirmahani, F., Salehi, F., Nazari, M.: Assessment of changes in growth traits, oxidative stress parameters, and enzymatic and non-enzymatic antioxidant defense mechanisms in Lepidium draba plant under osmotic stress induced by polyethylene glycol. - Protoplasma 257: 459-473, 2020d. Go to original source...
  79. Jamshidi Goharrizi, K., Riahi-Madvar, A., Rezaee, F., Pakzad, R., Bonyad, F.J., Ahsaei, M.G.: Effect of salinity stress on enzymes' activity, ions concentration, oxidative stress parameters, biochemical traits, content of sulforaphane, and cyp79f1 gene expression level in Lepidium draba plant. - J. Plant Growth Regul. 39: 1075-1094, 2020e. Go to original source...
  80. Janda, T., Majláth, I., Szalai, G.: Interaction of temperature and light in the development of freezing tolerance in plants. - J. Plant Growth Regul. 33: 460-469, 2014. Go to original source...
  81. Janmohammadi, M., Zolla, L., Rinalducci, S.: Low temperature tolerance in plants: changes at the protein level. - Phytochemistry 117: 76-89, 2015. Go to original source...
  82. Janská, A., Aprile, A., Zámečník, J., Cattivelli, L., Ovesná, J.: Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. - Funct. Integr. Genomics 11: 307-325, 2011. Go to original source...
  83. Janská, A., Marąík, P., Zelenková, S., Ovesná, J.: Cold stress and acclimation - what is important for metabolic adjustment? - Plant Biol. 12: 395-405, 2010. Go to original source...
  84. Jenks, M.A., Wood, A.J.: Genes for Plant Abiotic Stress. John Wiley & Sons, New York 2009. Go to original source...
  85. Kampinga, H.H., Craig, E.A.: The HSP70 chaperone machinery: J proteins as drivers of functional specificity. - Nat. Rev. mol. cell. Biol. 11: 579-592, 2010. Go to original source...
  86. Kargiotidou, A., Deli, D., Galanopoulou, D., Tsaftaris, A., Farmaki, T.: Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). - J. exp. Bot. 59: 2043-2056, 2008. Go to original source...
  87. Karlson, D., Imai, R.: Conservation of the cold shock protein of Escherichia coli. - Plant Physiol. 131: 12-15, 2003. Go to original source...
  88. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. - Nat. Biotechnol. 17: 287-291, 1999. Go to original source...
  89. Kazuoka, T., Oeda, K.: Heat-Stable COR (Cold-Regulated) proteins associated with freezing tolerance in spinach. - Plant Cell. Physiol. 33: 1107-1114, 1992.
  90. Kindgren, P., Dubreuil, C., Strand, Å.: The recovery of plastid function is required for optimal response to low temperatures in Arabidopsis. - PloS ONE 10: e0138010, 2015. Go to original source...
  91. Knight, H., Knight, M.R.: Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. - J. exp. Bot. 51: 1679-1686, 2000. Go to original source...
  92. Knox, A.K., Dhillon, T., Cheng, H., Tondelli, A., Pecchioni, N., Stockinger, E.J.: CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. - Theor. appl. Genet. 121: 21-35, 2010. Go to original source...
  93. Kocsy, G., Galiba, G., Brunold, C.: Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. - Physiol. Plant. 113: 158-164, 2001. Go to original source...
  94. Kosakivska, I., Klymchuk, D., Negretzky, V., Bluma, D., Ustinova, A.: Stress proteins and ultrastructural characteristics of leaf cells of plants with different types of ecological strategies. - Gen. appl. Plant Physiol. 34: 405-418, 2008.
  95. Kosová, K., Vítámvás, P., Práąil, I.: The role of dehydrins in plant response to cold. - Biol. Plant. 51: 601-617, 2007. Go to original source...
  96. Kurdrid, P., Senachak, J., Sirijuntarut, M., Yutthanasirikul, R., Phuengcharoen, P., Jeamton, W., Roytrakul, S., Cheevadhanarak, S., Hongsthong, A.: Comparative analysis of the Spirulina platensis subcellular proteome in response to low-and high-temperature stresses: uncovering cross-talk of signaling components. - Proteome Sci. 9: 1-17, 2011. Go to original source...
  97. Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., Schroeder, J.I.: NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. - EMBO J. 22: 2623-2633, 2003. Go to original source...
  98. Laudencia-Chingcuanco, D., Ganeshan, S., You, F., Fowler, B., Chibbar, R., Anderson, O.: Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.). - BMC Genomics 12: 1-20, 2011. Go to original source...
  99. Lin, C., Thomashow, M.F.: DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR 15 polypeptide. - Plant Physiol. 99: 519-525, 1992. Go to original source...
  100. Liu, G., Khan, N., Ma, X., Hou, X.: Identification, evolution, and expression profiling of histone lysine methylation moderators in Brassica rapa. - Plants 8: 526, 2019a. Go to original source...
  101. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. - Plant Cell 10: 1391-1406, 1998. Go to original source...
  102. Liu, X., Fu, L., Qin, P., Sun, Y., Liu, J., Wang, X.: Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana. - Gene 710: 210-217, 2019b. Go to original source...
  103. Liu, Y., Liang, J., Sun, L., Yang, X., Li, D.: Group 3 LEA protein, ZmLEA3, is involved in protection from low temperature stress. - Front. Plant Sci. 7: 1011, 2016. Go to original source...
  104. Liu, Y., Zhou, J.: MAPping kinase regulation of ICE1 in freezing tolerance. - Trends Plant Sci. 23: 91-93, 2018. Go to original source...
  105. Lv, D.-K., Bai, X., Li, Y., Ding, X.-D., Ge, Y., Cai, H., Ji, W., Wu, N., Zhu, Y.-M.: Profiling of cold-stress-responsive miRNAs in rice by microarrays. - Gene 459: 39-47, 2010. Go to original source...
  106. Maruyama, K., Takeda, M., Kidokoro, S., Yamada, K., Sakuma, Y., Urano, K., Fujita, M., Yoshiwara, K., Matsukura, S., Morishita, Y.: Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. - Plant Physiol. 150: 1972-1980, 2009. Go to original source...
  107. Matsuda, O., Sakamoto, H., Hashimoto, T., Iba, K.: A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. - J. biol. Chem. 280: 3597-3604, 2005. Go to original source...
  108. Matthew, A., Jenks, P.M.H: Plant Abiotic Stress. - Blackwell, New York 2005.
  109. Mboup, M., Fischer, I., Lainer, H., Stephan, W.: Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. - Mol. Biol. Evol. 29: 3641-3652, 2012. Go to original source...
  110. Medina, J., Bargues, M., Terol, J., Pérez-Alonso, M., Salinas, J.: The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. - Plant Physiol. 119: 463-470, 1999. Go to original source...
  111. Mickelbart, M.V., Hasegawa, P.M., Bailey-Serres, J.: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. - Nat. Rev. Genet. 16: 237-251, 2015. Go to original source...
  112. Misra, R.C., Kamthan, M., Kumar, S., Ghosh, S.: A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. - Sci. Rep. 6: 1-14, 2016. Go to original source...
  113. Miura, K., Furumoto, T.: Cold signaling and cold response in plants. - Int. J. mol. Sci. 14: 5312-5337, 2013. Go to original source...
  114. Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: AP2/ERF family transcription factors in plant abiotic stress responses. - Biochim. biophys. Acta, Gene. Regul. Mech. 1819: 86-96, 2012. Go to original source...
  115. Mogk, A., Schlieker, C., Friedrich, K.L., Schönfeld, H.-J., Vierling, E., Bukau, B.: Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. - J. biol. Chem. 278: 31033-31042, 2003. Go to original source...
  116. Monroe, J.G., McGovern, C., Lasky, J.R., Grogan, K., Beck, J., McKay, J.K.: Adaptation to warmer climates by parallel functional evolution of CBF genes in Arabidopsis thaliana. - Mol. Ecol. 25: 3632-3644, 2016. Go to original source...
  117. Monroy, A.F., Sangwan, V., Dhindsa, R.S.: Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. - Plant J. 13: 653-660, 1998. Go to original source...
  118. Nakamura, J., Yuasa, T., Huong, T.T., Harano, K., Tanaka, S., Iwata, T., Phan, T., Iwaya, M.: Rice homologs of inducer of CBF expression (OsICE) are involved in cold acclimation. - Plant Biotechnol. 28: 303-309, 2011. Go to original source...
  119. Nakamura, T., Ishikawa, M., Nakatani, H., Oda, A.: Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. - Plant Physiol. 147: 391-401, 2008. Go to original source...
  120. Nakayama, K., Okawa, K., Kakizaki, T., Honma, T., Itoh, H., Inaba, T.: Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. - Plant Physiol. 144: 513-523, 2007. Go to original source...
  121. Nazari, M., Jamshidi Goharrizi, K., Moosavi, S.S., Maleki, M.: Expression changes in the TaNAC2 and TaNAC69-1 transcription factors in drought stress tolerant and susceptible. - Plant Genet. Resour.: Characterisation Utilisation 1: 9, 2019. Go to original source...
  122. NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P., Sarhan, F.: Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. - Plant Physiol. 129: 1368-1381, 2002. Go to original source...
  123. Nordin, K., Heino, P., Palva, E.T.: Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. - Plant mol. Biol. 16: 1061-1071, 1991. Go to original source...
  124. Ortiz, D., Hu, J., Salas Fernandez, M.G.: Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions. - J. exp. Bot. 68: 4545-4557, 2017. Go to original source...
  125. Pandey, S., Carrer, M., Castagneri, D., Petit, G.: Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world's highest forest limit. - Perspect. Plant Ecol. Evol. Syst. 33: 34-41, 2018. Go to original source...
  126. Park, C.-J., Seo, Y.-S.: Heat shock proteins: a review of the molecular chaperones for plant immunity. - Plant Pathol. J. 31: 323, 2015. Go to original source...
  127. Pearce, S., Zhu, J., Boldizsár, Á., Vágújfalvi, A., Burke, A., Garland-Campbell, K., Galiba, G., Dubcovsky, J.: Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. - Theor. appl. Genet. 126: 2683-2697, 2013. Go to original source...
  128. Porat, R., Pavoncello, D., Lurie, S., Mccollum, T.G.: Identification of a grapefruit cDNA belonging to a unique class of citrus dehydrins and characterization of its expression patterns under temperature stress conditions. - Physiol. Plant. 115: 598-603, 2002. Go to original source...
  129. Pudney, P., Buckley, S., Sidebottom, C., Twigg, S., Sevilla, M.-P., Holt, C., Roper, D., Telford, J., McArthur, A., Lillford, P.: The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (Lolium perenne). - Arch. Biochem. Biophys. 410: 238-245, 2003. Go to original source...
  130. Rao, K., Raghavendra, A., Reddy, K.: Physiology and Molecular Biology of Stress Tolerance. - Springer, Dordrecht, Netherlands 2006.
  131. Renaut, J., Hausman, J.F., Wisniewski, M.E.: Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. - Physiol. Plant. 126: 97-109, 2006. Go to original source...
  132. Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C.-Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O., Samaha, R.: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. - Science 290: 2105-2110, 2000. Go to original source...
  133. Riechmann, J.L., Meyerowitz, E.M.: The AP2/EREBP family of plant transcription factors. - Biol. Chem. 379: 633-646, 1998.
  134. Ritonga, F.N., Chen, S.: Physiological and molecular mechanism involved in cold stress tolerance in plants. - Plants 9: 560, 2020. Go to original source...
  135. Rubio, S., Pérez, F.J.: ABA and its signaling pathway are involved in the cold acclimation and deacclimation of grapevine buds. - Sci. Hort. 256: 108565, 2019. Go to original source...
  136. Rudd, J.J., Franklin-Tong, V.E.: Unravelling response-specificity in Ca2+ signalling pathways in plant cells. - New Phytol. 151: 7-33, 2001. Go to original source...
  137. Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., Yamaguchi-Shinozaki, K.: DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. - Biochem. biophys. Res. Commun. 290: 998-1009, 2002. Go to original source...
  138. Sales, E., Viruel, J., Domingo, C., Marqués, L.: Genome wide association analysis of cold tolerance at germination in temperate japonica rice (Oryza sativa L.) varieties. - PloS ONE 12: e0183416, 2017. Go to original source...
  139. Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.: Engineering cold stress tolerance in crop plants. - Curr. Genom. 12: 30, 2011. Go to original source...
  140. Schmidt, S., Dethloff, F., Beine-Golovchuk, O., Kopka, J.: The REIL1 and REIL2 Proteins of Arabidopsis thaliana are required for leaf growth in the cold - Plant Physiol. 163: 1623-1639, 2013. Go to original source...
  141. Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., Shinozaki, K.: Molecular responses to drought, salinity and frost: common and different paths for plant protection. - Curr. Opin. Biotechnol. 14: 194-199, 2003. Go to original source...
  142. Seo, P.J., Lee, A.-K., Xiang, F., Park, C.-M.: Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. - Plant Cell. Physiol. 49: 334-344, 2008. Go to original source...
  143. Shabala, S., Alnayef, M., Bose, J., Chen, Z.-H., Venkataraman, G., Zhou, M., Shabala, L., Yu, M.: Revealing the role of the Calcineurin B-Like Protein-Interacting Protein Kinase 9 (CIPK9) in rice adaptive responses to salinity, osmotic stress, and K+ deficiency. - Plants 10: 1513, 2021. Go to original source...
  144. Shi, J., Liu, M., Chen, Y., Wang, J., Lu, C.: Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mongolicus enhances viability of Escherichia coli and tobacco under cold stress. - Plant Growth Regul. 79: 71-80, 2016. Go to original source...
  145. Shi, Y., Ding, Y., Yang, S.: Molecular regulation of CBF signaling in cold acclimation. - Trends Plant Sci. 23: 623-637, 2018. Go to original source...
  146. Shimamura, C., Ohno, R., Nakamura, C., Takumi, S.: Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. - J. Plant Physiol. 163: 213-219, 2006. Go to original source...
  147. Sidebottom, C., Buckley, S., Pudney, P., Twigg, S., Jarman, C., Holt, C., Telford, J., McArthur, A., Worrall, D., Hubbard, R.: Heat-stable antifreeze protein from grass. - Nature 406: 256-256, 2000. Go to original source...
  148. Simpson, D.J., Smallwood, M., Twigg, S., Doucet, C.J., Ross, J., Bowles, D.J.: Purification and characterisation of an antifreeze protein from Forsythia suspensa (L.). - Cryobiology 51: 230-234, 2005. Go to original source...
  149. Soltész, A., Smedley, M., Vashegyi, I., Galiba, G., Harwood, W., Vágújfalvi, A.: Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. - J. exp. Bot. 64: 1849-1862, 2013. Go to original source...
  150. Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J., Thomashow, M.F.: Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. - Proc. nat. Acad. Sci. USA 95: 14570-14575, 1998. Go to original source...
  151. Stockinger, E.J., Skinner, J.S., Gardner, K.G., Francia, E., Pecchioni, N.: Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. - Plant J. 51: 308-321, 2007. Go to original source...
  152. Sun, W., Van Montagu, M., Verbruggen, N.: Small heat shock proteins and stress tolerance in plants. - Biochim. biophys. Acta, Gene Struct. Expression 1577: 1-9, 2002. Go to original source...
  153. Takumi, S., Nakamura, C.: Abiotic stress signal pathways associated with development of freezing tolerance after cold acclimation in common. - Front. Wheat Biosci., Wheat Info. Serv. 100: 89-107, 2005.
  154. Theocharis, A., Clément, C., Barka, E.A.: Physiological and molecular changes in plants grown at low temperatures. - Planta 235: 1091-1105, 2012. Go to original source...
  155. Thomashow, M.F.: Role of cold-responsive genes in plant freezing tolerance. - Plant Physiol. 118: 1-8, 1998. Go to original source...
  156. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. - Annu. Rev. Plant Biol. 50: 571-599, 1999. Go to original source...
  157. Thomashow, M.F.: So what's new in the field of plant cold acclimation? Lots! - Plant Physiol. 125: 89-93, 2001. Go to original source...
  158. Timperio, A.M., Egidi, M.G., Zolla, L.: Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). - J. Proteom. 71: 391-411, 2008. Go to original source...
  159. Tolosa, L.N., Zhang, Z.: The role of major transcription factors in solanaceous food crops under different stress conditions: current and future perspectives. - Plants 9: 56, 2020. Go to original source...
  160. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. - Nat. Biotechnol. 28: 511-515, 2010. Go to original source...
  161. Tyystjärvi, E.: Photoinhibition of photosystem II. - Int. Rev. cell. mol. Biol. 300: 243-303, 2013. Go to original source...
  162. Uemura, M., Steponkus, P.L.: Effect of cold acclimation on membrane lipid composition and freeze-induced membrane destablization. - In: Li, P.-H., Chen, T.-H.-H (eds.): Plant Cold Hardiness. Pp. 171-179. Springer, Dordrecht 1997. Go to original source...
  163. Vágújfalvi, A., Galiba, G., Dubcovsky, J., Cattivelli, L.: Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. - Mol. gen. Genet. 263: 194-200, 2000. Go to original source...
  164. Valitova, J., Renkova, A., Mukhitova, F., Dmitrieva, S., Beckett, R.P., Minibayeva, F.V.: Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress. - Plant Physiol. Biochem. 142: 452-459, 2019. Go to original source...
  165. Visconti, S., D'Ambrosio, C., Fiorillo, A., Arena, S., Muzi, C., Zottini, M., Aducci, P., Marra, M., Scaloni, A., Camoni, L.: Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants. - Plant Sci. 289: 110215, 2019. Go to original source...
  166. Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., Thomashow, M.F.: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. - Plant J. 41: 195-211, 2005. Go to original source...
  167. Wang, T., Ye, C., Wang, M., Chu, G.: Identification of cold-stress responsive proteins in Anabasis aphylla seedlings via the iTRAQ proteomics technique. - J. Plant Interact. 12: 505-519, 2017. Go to original source...
  168. Wang, W., Gao, T., Chen, J., Yang, J., Huang, H., Yu, Y.: The late embryogenesis abundant gene family in tea plant (Camellia sinensis): genome-wide characterization and expression analysis in response to cold and dehydration stress. - Plant Physiol. Biochem. 135: 277-286, 2019a. Go to original source...
  169. Wang, X., Ding, Y., Li, Z., Shi, Y., Wang, J., Hua, J., Gong, Z., Zhou, J.-M., Yang, S.: PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15. - Dev. Cell 51: 222-235.e225, 2019b. Go to original source...
  170. Wang, Y., Mao, Z., Jiang, H., Zhang, Z., Chen, X.: A feedback loop involving MdMYB108L and MdHY5 controls apple cold tolerance. - Biochem. biophys. Res. Commun. 512: 381-386, 2019c. Go to original source...
  171. Welin, B.V., Olson, Å., Palva, E.T.: Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. - Plant mol. Biol. 29: 391-395, 1995. Go to original source...
  172. Wen, X., Wang, S., Duman, J.G., Arifin, J.F., Juwita, V., Goddard, W.A., Rios, A., Liu, F., Kim, S.-K., Abrol, R.: Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature. - Proc. nat. Acad. Sci. USA 113: 6683-6688, 2016. Go to original source...
  173. Wisniewski, M., Nassuth, A., Teulieres, C., Marque, C., Rowland, J., Cao, P.B., Brown, A.: Genomics of cold hardiness in woody plants. - Crit. Rev. Plant. Sci. 33: 92-124, 2014. Go to original source...
  174. Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M., Griffith, M.: Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). - Physiol. Plant. 105: 600-608, 1999. Go to original source...
  175. Xu, H., Yang, Y., Xie, L., Li, X., Feng, C., Chen, J., Xu, C.: Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica). - PloS ONE 9: e87575, 2014. Go to original source...
  176. Xu, Y., Hu, W., Liu, J., Song, S., Hou, X., Jia, C., Li, J., Miao, H., Wang, Z., Tie, W.: An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). - Plant Physiol. Biochem. 147: 66-76, 2020. Go to original source...
  177. Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. - Plant Cell 6: 251-264, 1994. Go to original source...
  178. Yamasaki, Y., Randall, S.K.: Functionality of soybean CBF/DREB1 transcription factors. - Plant Sci. 246: 80-90, 2016. Go to original source...
  179. Yang, W., Zhang, L., Lv, H., Li, H., Zhang, Y., Xu, Y., Yu, J.: The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. - Front. Plant Sci. 6: 406, 2015. Go to original source...
  180. Yang, X., Wang, R., Hu, Q., Li, S., Mao, X., Jing, H., Zhao, J., Hu, G., Fu, J., Liu, C.: DlICE1, a stress-responsive gene from Dimocarpus longan, enhances cold tolerance in transgenic Arabidopsis. - Plant Physiol. Biochem. 142: 490-499, 2019. Go to original source...
  181. Yao, P., Sun, Z., Li, C., Zhao, X., Li, M., Deng, R., Huang, Y., Zhao, H., Chen, H., Wu, Q.: Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. - Plant Physiol. Biochem. 125: 85-94, 2018. Go to original source...
  182. Yu, X.-M., Griffith, M., Wiseman, S.B.: Ethylene induces antifreeze activity in winter rye leaves. - Plant Physiol. 126: 1232-1240, 2001. Go to original source...
  183. Yue, N., Zheng, C.-X., BO, X., Hao, J.-Q.: Proteomics analysis of heteromorphic leaves of Populus euphratica Oliv. - Chin. Biotechnol. 29, 2010.
  184. Zachariassen, K.E., Kristiansen, E.: Ice nucleation and antinucleation in nature. - Cryobiology 41: 257-279, 2000. Go to original source...
  185. Zarka, D.G., Vogel, J.T., Cook, D., Thomashow, M.F.: Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. - Plant Physiol. 133: 910-918, 2003. Go to original source...
  186. Zhang, J., Xu, Y., Huan, Q., Chong, K.: Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. - BMC Genomics 10: 1-16, 2009. Go to original source...
  187. Zhang, X., Teixeira da Silva, J.A., Niu, M., Li, M., He, C., Zhao, J., Zeng, S., Duan, J., Ma, G.: Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. - Sci. Rep. 7: 1-18, 2017a. Go to original source...
  188. Zhang, Z., Li, J., Pan, Y., Li, J., Shi, H., Zeng, Y., Guo, H., Yang, S., Zheng, W., Yu, J.: Natural variation in CTB4a enhances rice adaptation to cold habitats. - Nat. Biotechnol. 8: 1-13, 2017b. Go to original source...
  189. Zhao, C., Lang, Z., Zhu, J.-K.: Cold responsive gene transcription becomes more complex. - Trends Plant Sci. 20: 466-468, 2015. Go to original source...
  190. Zhao, C., Mao, K., You, C.-X., Zhao, X.-Y., Wang, S.-H., Li, Y.-Y., Hao, Y.-J.: Molecular cloning and functional analysis of a UV-B photoreceptor gene, MdUVR8 (UV Resistance Locus 8), from apple. - Plant Sci. 247: 115-126, 2016. Go to original source...
  191. Zhao, C., Zhu, J.-K.: The broad roles of CBF genes: from development to abiotic stress. - Plant Signal. Behav. 11: e1215794, 2016. Go to original source...
  192. Zhao, M.-L., Wang, J.-N., Shan, W., Fan, J.-G., Kuang, J.-F., Wu, K.-Q., LI, X.-P., Chen, W.-X., He, F.-Y., Chen, J.-Y., Lu, W.-J.: Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. - Plant. Cell. Environ. 36: 30-51, 2013. Go to original source...
  193. Zheng, Y., Luo, L., Wei, J., Chen, Q., Yang, Y., Hu, X., Kong, X.: The glutamate receptors AtGLR1. 2 and AtGLR1. 3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana. - Biochem. biophys. Res. Commun. 506: 895-900, 2018. Go to original source...
  194. Zhou, M., Chen, H., Wei, D., Ma, H., Lin, J.: Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature. - Sci. Rep. 7: 1-13, 2017. Go to original source...
  195. Zhou, X., Wang, G., Sutoh, K., Zhu, J.-K., Zhang, W.: Identification of cold-inducible microRNAs in plants by transcriptome analysis. - Biochim. biophys. Acta, Gene. Regul. Mech. 1779: 780-788, 2008. Go to original source...
  196. Zuo, Z.-F., Kang, H.-G., Park, M.-Y., Jeong, H., Sun, H.-J., Song, P.-S., Lee, H.-Y.: Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. - Plant Sci. 289: 110254, 2019. Go to original source...