biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 67:234-248, 2023 | DOI: 10.32615/bp.2023.029

The role of chitosan priming in induction of GABA shunt pathway during wheat seed germination under salt stress

N.A. Al-Quraan1, *, N.H. Samarah2, E.I. Rasheed1
1 Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
2 Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan

Soil salinity leads to a reduction in plant growth, germination, relative water content, and production of wheat plants worldwide. Chitosan showed a positive effect on plant growth and development and improved plant stress tolerance. The current study aimed to examine the effect of different chitosan concentrations on the gamma-aminobutyric acid (GABA) shunt pathway in germinating seeds of wheat (Triticum durum L.) under salt stress (25 - 200 mM NaCl). We determined the seed germination pattern, seed moisture content, GABA shunt metabolites (GABA, glutamate, and alanine), oxidative damage in terms of malondialdehyde (MDA) accumulation, and the glutamate decarboxylase (GAD) mRNA transcription. Pre-treatment of wheat seeds with chitosan improved germination by enhancing germination percentage, seedling length, and seedling fresh and dry masses under salt stress. Data showed an increase in GABA shunt and their metabolites (alanine and glutamate), MDA content, and GAD mRNA transcription, and a decrease in germination percentage, seedling length, seedling fresh and dry masses for both untreated and chitosan-treated seeds under salt stress. Our results suggest that the elevation of GABA in chitosan-treated seeds was able to maintain metabolic stability under salt stress. The MDA content increased in chitosan-treated seeds as NaCl concentration increased, however, the increase was slightly lower than the MDA content in untreated seeds which confirmed that chitosan activates GAD mRNA expression that leads to activate GABA shunt to involve in the reduction of membrane damage and activation of reactive oxygen species scavenging systems under salt stress. Consequently, this study demonstrated that chitosan significantly enhanced the accumulation of GABA and amino acids metabolism to maintain the C:N balance and improved salt tolerance in wheat seeds during seed germination.

Keywords: chitosan, GABA, salt stress; seed germination, Triticum durum, wheat.

Received: October 12, 2022; Revised: June 13, 2023; Accepted: July 18, 2023; Published online: August 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Al-Quraan, N.A., Samarah, N.H., & Rasheed, E.I. (2023). The role of chitosan priming in induction of GABA shunt pathway during wheat seed germination under salt stress. Biologia plantarum67, Article 234-248. https://doi.org/10.32615/bp.2023.029
Download citation

Supplementary files

Download file6968_AlQuraan_Suppl.pdf

File size: 123.12 kB

References

  1. Akçay N., Bor M., Karabudak T. et al.: Contribution of gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. - J. Plant Physiol. 169: 452-458, 2012. Go to original source...
  2. ALKahtani M.D.F., Attia K.A., Hafez Y.M. et al.: Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. - Agronomy 10: 1180, 2020. Go to original source...
  3. Al-Quraan N.A., Al-Ajlouni Z.I., Obedat D.I.: The GABA shunt pathway in germinating seeds of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) under salt stress. - Seed Sci. Res. 29: 250-260, 2019. Go to original source...
  4. Al-Quraan N.A., Ghunaim A.I., Alkhatib R.Q.: The influence of chlorsulfuron herbicide on GABA metabolism and oxidative damage in lentil (Lens culinaris Medik) and wheat (Triticum aestivum L.) seedlings. - Acta Physiol. Plant. 37: 227, 2015. Go to original source...
  5. Al-Quraan N.A., Locy R.D., Singh N.K.: Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress. - Plant Physiol. Biochem. 48: 697-702, 2010. Go to original source...
  6. Al-Quraan N.A., Locy R.D., Singh N.K.: Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants. - Plant Biotechnol. Rep. 5: 225-234, 2011. Go to original source...
  7. Al-Quraan N.A., Sartawe F.A., Qaryouti M.M.: Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress. - J. Plant Physiol. 170: 1003-1009, 2013. Go to original source...
  8. Al-Tawaha A.M., Seguin P., Smith D.L., Beaulieu C.: Foliar application of elicitors alters isoflavone concentrations and other seed characteristics of field-grown soybean. - Can. J. Plant Sci. 86: 677-684, 2006. Go to original source...
  9. Al-Tawaha A.R., Turk M.A., Al-Tawaha A.R.M. et al.: Using chitosan to improve growth of maize cultivars under salinity conditions. - Bulg. J. Agric. Sci. 24: 437-442, 2018.
  10. Al-Tawaha A.R.M., Al-Ghzawi A.L.A.: Effect of chitosan coating on seed germination and salt tolerance of lentil (Lens culinaris L.). - Res. Crop. 14: 489-491, 2013.
  11. Altman A.: From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance, and forestry. - In Vitro Cell. Dev.-Pl. 39: 75-84, 2003. Go to original source...
  12. Bano A., Fatima M.: Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. - Biol. Fert. Soils 45: 405-413, 2009. Go to original source...
  13. Batushansky A., Kirma M., Grillich N. et al.: Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic. - Mol. Plant 7: 1065-1068, 2014. Go to original source...
  14. Bergmeyer H.U.: Methods of Enzymatic Analysis. 3rd Edition. Vol. I. Pp. 574. Verlag Chemie, Weinheim 1983.
  15. Bistgani Z.E., Siadat S.A., Bakhshandeh A. et al.: Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. - Crop J. 5: 407-415, 2017. Go to original source...
  16. Bouché N., Fromm H.: GABA in plants: just a metabolite? - Trends Plant Sci. 9: 110-115, 2004. Go to original source...
  17. Bown A.W., MacGregor K.B., Shelp B.J.: Gamma-aminobutyrate: defense against invertebrate pests? - Trends Plant Sci. 11: 424-427, 2006. Go to original source...
  18. Chaffei C., Pageau K., Suzuki A. et al.: Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. - Plant Cell Physiol. 45: 1681-1693, 2004. Go to original source...
  19. Che-Othman M.H., Jacoby R.P., Millar A.H., Taylor N.L.: Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. - New Phytol. 225: 1166-1180, 2020. Go to original source...
  20. Chookhongkha N., Sopondilok T., Photchanachai S.: Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. - Acta Hortic. 973: 231-237, 2012. Go to original source...
  21. Cramer G.R., Ergül A., Grimplet J. et al.: Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. - Funct. Integr. Genomic. 7: 111-134, 2007. Go to original source...
  22. El Hadrami A., Adam L.R., El Hadrami I., Daayf F.: Chitosan in plant protection. - Mar. Drugs 8: 968-987, 2010. Go to original source...
  23. Fait A., Fromm H., Walter D. et al.: Highway or byway: the metabolic role of the GABA shunt in plants. - Trends Plant Sci. 13: 14-19, 2008. Go to original source...
  24. Farouk S., Mosa A.A., Taha A.A. et al.: Protective effect of humic acid and chitosan on radish (Raphanus sativus L. var. sativus) plants subjected to cadmium stress. - J. Stress Physiol. Biochem. 7: 99-116, 2011.
  25. Fraire-Velázquez S., Balderas-Hernández V.E.: Abiotic stress in plants and metabolic responses. - In: Vahdati K., Leslie C. (ed.): Abiotic Stress - Plant Responses and Applications in Agriculture. Pp. 25-48. InTech Open, New York 2013. Go to original source...
  26. Franco F., Iriti M.: Callose synthesis as a tool to screen chitosan efficacy in inducing plant resistance to pathogens. - Caryologia 60: 121-124, 2007. Go to original source...
  27. Furbank R.T., White R., Palta J.A., Turner N.C.: Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod wall, seed coat, and embryo. - J. Exp. Bot. 55: 1687-1696, 2004. Go to original source...
  28. Garg N., Singla R.: Variability in the response of chickpea cultivars to short-term salinity, in terms of water retention capacity, membrane permeability, and osmo-protection. - Turk. J. Agric. For. 33: 57-63, 2009. Go to original source...
  29. Geng W., Li Z., Hassan M.J., Peng Y.: Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. - BMC Plant Biol. 20: 506, 2020. Go to original source...
  30. Guan Y.J., Hu J., Wang X.J., Shao C.X.: Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. - J. Zhejiang Univ. Sci. B 10: 427-433, 2009. Go to original source...
  31. Hadwiger L., Kendra D., Fristensky B., Wagoner W.: Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. - In: Muzzarelli R., Jeuniaux C., Gooday G.W. (ed.): Chitin in Nature and Technology. Pp. 209-214. Springer, Boston 1986. Go to original source...
  32. Hahm M.S., Son J.S., Hwang Y.J. et al.: Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. - J. Microbiol. Biotechnol. 27: 1790-1797, 2017. Go to original source...
  33. Hampson C.R., Simpson G.M.: Effects of temperature, salt, and osmotic potential on early growth of wheat (Triticum aestivum). I. Germination. - Can. J. Bot. 68: 524-528, 1990. Go to original source...
  34. Hédiji H., Djebali W., Cabasson C. et al.: Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. - Ecotox. Environ. Safe. 73: 1965-1974, 2010. Go to original source...
  35. Hernández-Hernández H., Juárez-Maldonado A., Benavides-Mendoza A. et al.: Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. - Agronomy 8: 175, 2018. Go to original source...
  36. Hijaz F., Nehela Y., Killiny N.: Application of gamma-aminobutyric acid increased the level of phytohormones in Citrus sinensis. - Planta 248: 909-918, 2018. Go to original source...
  37. Ibrahim E.A.: Seed priming to alleviate salinity stress in germinating seeds. - J. Plant Physiol. 192: 38-46, 2016. Go to original source...
  38. Jabeen N., Ahmad R.: The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. - J. Sci. Food Agr. 93: 1699-1705, 2013. Go to original source...
  39. Jaleel C.A., Gopi R., Sankar B. et al.: Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. - S. Afr. J. Bot. 73: 190-195, 2007. Go to original source...
  40. Kaplan F., Kopka J., Haskell D.W. et al.: Exploring the temperature-stress metabolome of Arabidopsis. - Plant Physiol. 136: 4159-4168, 2004. Go to original source...
  41. Kinnersley A.M., Turano F.J.: Gamma aminobutyric acid (GABA) and plant responses to stress. - Crit. Rev. Plant Sci. 19: 479-509, 2000. Go to original source...
  42. Kishor P.B.K., Sangam S., Amrutha R. et al.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. - Curr. Sci. 88: 424-438, 2005.
  43. Li R., He J., Xie H. et al.: Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). - Int. J. Biol. Macromol. 126: 91-100, 2019. Go to original source...
  44. Li Z., Yu J., Peng Y. et al.: Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). - Sci. Rep.-UK 6: 30338, 2016. Go to original source...
  45. Li Z., Zhang Y., Zhang X. et al.: Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. - J. Proteome Res. 16: 3039-3052, 2017. Go to original source...
  46. Lin W., Hu X., Zhang W. et al.: Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. - J. Plant Physiol. 162: 937-944, 2005. Go to original source...
  47. Lindsey III B.E., Rivero L., Calhoun C.S. et al.: Standardized method for high-throughput sterilization of Arabidopsis seeds. - J. Vis. Exp. 128: e56587, 2017. Go to original source...
  48. Ma L., Li Y., Yu C. et al.: Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. - Protoplasma 249: 393-399, 2012. Go to original source...
  49. Mahdavi B.: Seed germination and growth responses of isabgol (Plantago ovata Forsk) to chitosan and salinity. - Int. J. Agric. Crop Sci. 5: 1084-1088, 2013.
  50. Mahdavi B., Rahimi A.: Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. - Eurasia J. Biosci. 7: 69-76, 2013. Go to original source...
  51. Maron J.L., Crone E.: Herbivory: effects on plant abundance, distribution and population growth. - Philos. T. Roy. Soc. B 273: 2575-2584, 2006. Go to original source...
  52. Mayer R.R., Cherry J.H., Rhodes D.: Effects of heat shock on amino acid metabolism of cowpea cells. - Plant Physiol. 94: 796-810, 1990. Go to original source...
  53. Mazzucotelli E., Tartari A., Cattivelli L., Forlani G.: Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. - J. Exp. Bot. 57: 3755-3766, 2006. Go to original source...
  54. Miransari M., Smith D.L.: Plant hormones and seed germination. - Environ. Exp. Bot. 99: 110-121, 2014. Go to original source...
  55. Mordecai E.A.: Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. - Ecol. Monogr. 81: 429-441, 2011. Go to original source...
  56. Muzzarelli R.A.A., Aiba S., Fujiwara Y. et al.: Filmogenic properties of chitin/chitosan. - In: Muzzarelli R., Jeuniaux C., Gooday G.W. (ed.): Chitin in Nature and Technology. Pp. 389-402. Springer, Boston 1986. Go to original source...
  57. Orlita A., Sidwa-Gorycka M., Paszkiewicz M. et al.: Application of chitin and chitosan as elicitors of coumarins and furoquinolone alkaloids in Ruta graveolens L. (common rue). - Biotechnol. Appl. Biochem. 51: 91-96, 2008. Go to original source...
  58. Parvin K., Hasanuzzaman M., Bhuyan M.H.M.B. et al.: Comparative physiological and biochemical changes in tomato (Solanum lycopersicum L.) under salt stress and recovery: role of antioxidant defense and glyoxalase systems. - Antioxidants 8: 350, 2019. Go to original source...
  59. Pongprayoon W., Roytrakul S., Pichayangkura R., Chadchawan S.: The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). - Plant Growth Regul. 70: 159-173, 2013. Go to original source...
  60. Rajaram S., Van Ginkel M.: Mexico, 50 years of international wheat breeding. - In: Bonjean A.P., Angus W.J. (ed.): The World Wheat Book: A History of Wheat Breeding. Pp. 579-604. Lavoisier Publishing, Paris 2001.
  61. Ranty B., Aldon D., Galaud J.-P.: Plant calmodulins and calmodulin-related proteins: multifaceted relays to decode calcium signals. - Plant Signal Behav. 1: 96-104, 2006. Go to original source...
  62. Renault H., Roussel V., El Amrani A. et al.: The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. - BMC Plant Biol. 10: 20, 2010. Go to original source...
  63. Roberts M.R.: Does GABA act as a signal in plants? Hints from molecular studies. - Plant Signal Behav. 2: 408-409, 2007. Go to original source...
  64. Sairam R.K., Rao K.V., Srivastava G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. - Plant Sci. 163: 1037-1046, 2002. Go to original source...
  65. Samarah N.H., Al-Quraan N.A., Massad R.S., Welbaum G.E.: Treatment of bell pepper (Capsicum annuum L.) seeds with chitosan increases chitinase and glucanase activities and enhances emergence in a standard cold test. - Sci. Hortic.-Amsterdam 269: 109393, 2020. Go to original source...
  66. Samarah N.H., Wang H., Welbaum G.E.: Pepper (Capsicum annuum) seed germination and vigour following nanochitin, chitosan or hydropriming treatments. - Seed Sci. Technol. 44: 609-623, 2016. Go to original source...
  67. Sathiyabama M., Manikandan A.: Chitosan nanoparticle induced defense responses in fingermillet plants against blast disease caused by Pyricularia grisea (Cke.) Sacc. - Carbohydr. Polym. 154: 241-246, 2016. Go to original source...
  68. Scholz S.S., Malabarba J., Reichelt M. et al.: Evidence for GABA-induced systemic GABA accumulation in Arabidopsis upon wounding. - Front. Plant Sci. 8: 388, 2017. Go to original source...
  69. Shao C.-X., Hu J.-J., Song W.-J., Hu W.-M.: [Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling.] - J. Zhejiang Univ. 31: 705-708, 2005. [In Chinese]
  70. Shelp B.J., Bown A.W., McLean M.D.: Metabolism and functions of gamma-aminobutyric acid. - Trends Plant Sci. 4: 446-452, 1999. Go to original source...
  71. Shelp B.J., Bozzo G.G., Trobacher C.P. et al.: Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. I. Pathway structure. - Botany 90: 651-668, 2012. Go to original source...
  72. Shewry P.R.: Wheat. - J. Exp. Bot. 60: 1537-1553, 2009. Go to original source...
  73. Sigler W.V., Turco R.F.: The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. - Appl. Soil Ecol. 21: 107-118, 2002. Go to original source...
  74. Strauss S.Y., Zangerl A.R.: Plant-insect interactions in terrestrial ecosystems. - In: Herrera C.M., Pellmyr O. (ed.): Plant-Animal Interactions: An Evolutionary Approach. Pp. 77-106. Wiley-Blackwell Publishing, Oxford 2002.
  75. Tourian N., Sinaki J., Hasani N., Madani H.: Change in photosynthetic pigment concentration of wheat grass (Agropyron repens) cultivars response to drought stress and foliar application with chitosan. - Int. J. Agron. Plant Prod. 4: 1084-1091, 2013.
  76. Tunio S.D., Korejo M.N., Jarwar A.D., Waggan M.R.: Studies on indigenous and exotic weed competition in wheat. - Pak. J. Agric. Agric. Eng. Vet. Sci. 22: 1-8, 2006.
  77. van Ittersum M.K., Cassman K.G., Grassini P. et al.: Yield gap analysis with local to global relevance - a review. - Field Crop. Res. 143: 4-17, 2013. Go to original source...
  78. Van S.N., Minh H.D., Anh D.N.: Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. - Biocatal. Agric. Biotechnol. 2: 289-294, 2013. Go to original source...
  79. Wang M., Chen Y., Zhang R. et al.: Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (Triticum aestivum L.) in Northwest China. - Field Crop. Res. 172: 11-20, 2015. Go to original source...
  80. Wang W., Vinocur B., Altman A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. - Planta 218: 1-14, 2003. Go to original source...
  81. Yang F., Hu J., Li J. et al.: Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. - Plant Growth Regul. 58: 131-136, 2009. Go to original source...
  82. Yang Y., Guo Y.: Elucidating the molecular mechanisms mediating plant salt-stress responses. - New Phytol. 217: 523-539, 2018. Go to original source...
  83. Yin H., Zhao X., Du Y.: Oligochitosan: a plant diseases vaccine - a review. - Carbohydr. Polym. 82: 1-8, 2010. Go to original source...
  84. Zhang G., Bown A.W.: The rapid determination of γ-aminobutyric acid. - Phytochemistry 44: 1007-1009, 1997. Go to original source...
  85. Zhang H., Irving L.J., McGill C. et al.: The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. - Ann. Bot.-London 106: 1027-1035, 2010. Go to original source...
  86. Zhao J., Davis L.C., Verpoorte R.: Elicitor signal transduction leading to production of plant secondary metabolites. - Biotechnol. Adv. 23: 283-333, 2005. Go to original source...
  87. Zhu J.-K.: Plant salt stress. - Trends Plant Sci. 6: 66-71, 2001. Go to original source...
  88. Zhu J.-K.: Salt and drought stress signal transduction in plants. - Annu. Rev. Plant Biol. 53: 247-273, 2002. Go to original source...
  89. Zhu X., Liao J., Xia X. et al.: Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature. - BMC Plant Biol. 19: 43, 2019. Go to original source...
  90. Zong H., Liu S., Xing R. et al.: Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. - Ecotox. Environ. Safe. 138: 271-278, 2017. Go to original source...