biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 67:305-321, 2023 | DOI: 10.32615/bp.2023.034

Biotechnological approaches for enhancing the resistance of tomato plants to phytopathogenic bacteria

A. Buziashvili1, *, Y. Kolomiiets2, L. Butsenko3, A. Yemets1, *
1 Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Kyiv, 04123, Ukraine
2 National University of Life and Environmental Sciences of Ukraine, Kyiv, 03041, Ukraine
3 D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine

Bacterial diseases of vegetable crops cause significant losses of yield and substantially decrease food quality. For sustainable development of agriculture, it is highly important to use the most effective strategies for the protection of vegetable crops from bacterial diseases which allows the creation of resistant cultivars and their introduction in regions with an increased risk of damage by phytopathogenic bacteria. This paper reviews the most widespread bacterial diseases of tomatoes, the mechanisms of interaction of plants with phytopathogenic bacteria, and the advantages of the biotechnological strategies over traditional and marker-associated breeding for creation of the resistant tomato cultivars. The current research progress on the use of biotechnological approaches such as cell selection, genetic engineering, genome editing, and gene silencing is summarized, with a special emphasis on the advantages and limitations of these methods.

Keywords: bacterial diseases, biotechnology, plant-microbe interaction, resistance to bacteria, tomatoes.

Received: May 31, 2023; Revised: October 12, 2023; Accepted: October 17, 2023; Published online: December 14, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Buziashvili, A., Kolomiiets, Y., Butsenko, L., & Yemets, A. (2023). Biotechnological approaches for enhancing the resistance of tomato plants to phytopathogenic bacteria. Biologia plantarum67, Article 305-321. https://doi.org/10.32615/bp.2023.034
Download citation

References

  1. Afroz A., Chaudhry Z., Rashid U. et al.: Enhanced resistance against bacterial wilt in transgenic tomato (Lycopersicon esculentum) lines expressing the Xa21 gene. - Plant Cell Tiss. Org. Cult. 104: 227-237, 2011. Go to original source...
  2. Akram F., Sahreen S., Aamir F. et al.: An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. - Mol. Biotechnol. 65: 227-242, 2023. Go to original source...
  3. Anil V.S., Lobo S., Bennur S.: Somaclonal variations for crop improvement: Selection for disease resistant variants in vitro. - Plant Sci. Today 5: 44-54, 2018. Go to original source...
  4. Arofatullah N.A., Hasegawa M., Tanabata S. et al.: Heat shock-induced resistance against Pseudomonas syringae pv. tomato (Okabe) Young et al. via heat shock transcription factors in tomato. - Agronomy 9: 2, 2019. Go to original source...
  5. Barka G.D., Lee J.: Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected Solanaceae crop plants. - Bioengineered 13: 14646-14666, 2022. Go to original source...
  6. Berrueta M.C., Giménez G., Galván G.A., Borges A.: New sources of partial resistance to bacterial spot race T2 in processing tomatoes. - Hortic. Bras. 34: 326-332, 2016. Go to original source...
  7. Bhatia P., Ashwath N., Midmore D.J.: Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato. - In Vitro Cell. Dev.-Pl. 41: 457-464, 2005. Go to original source...
  8. Bhatia P., Ashwath N., Senaratna T., Midmore D.: Tissue culture studies of tomato (Lycopersicon esculentum). - Plant Cell Tiss. Org. Cult. 78: 1-21, 2004. Go to original source...
  9. Bhattarai K., Louws F.J., Williamson J.D., Panthee D.R.: Resistance to Xanthomonas perforans race T4 causing bacterial spot in tomato breeding lines. - Plant Pathol. 66: 1103-1109, 2017. Go to original source...
  10. Bidabadi S.S., Jain S.M.: Cellular, molecular, and physiological aspects of in vitro plant regeneration. - Plants-Basel 9: 702, 2020. Go to original source...
  11. Bigini V., Camerlengo F., Botticella E. et al.: Biotechnological resources to increase disease-resistance by improving plant immunity: a sustainable approach to save cereal crop production. - Plants-Basel 10: 1146, 2021. Go to original source...
  12. Blancard D.: Tomato Diseases: Identification, Biology and Control. 2nd Edition. Pp. 688. CRC Press, London 2013.
  13. Boddy L.: Pathogens of autotrophs. - In: Watkinson S.C., Boddy L., Money N.P. (ed.): The Fungi. 3rd Edition. Pp. 245-292. Academic Press, Amsterdam 2016. Go to original source...
  14. Borrelli V.M.G., Brambilla V., Rogowsky P. et al.: The enhancement of plant disease resistance using CRISPR/Cas9 technology. - Front. Plant Sci. 9: 1245, 2018. Go to original source...
  15. Braun S.G., Meyer A., Holst O. et al.: Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. - Mol. Plant Microbe. Interact. 18: 674-681, 2005. Go to original source...
  16. Butsenko L.: [Influence of Pseudomonas syringae pv. atrofaciens lipopolysaccharides on physiological and biochemical processes in Allium cepa cells.] - Microbiol. Z. 78: 65-74, 2016. [In Ukrainian] Go to original source...
  17. Buziashvili A., Cherednichenko L., Kropyvko S., Yemets A.: Transgenic tomato lines expressing human lactoferrin show increased resistance to bacterial and fungal pathogens. - Biocatal. Agric. Biotechnol. 25: 101602, 2020. Go to original source...
  18. Buziashvili A., Yemets A.: Lactoferrin and its role in biotechnological strategies for plant defense against pathogens. - Transgenic Res. 32: 1-16, 2023. Go to original source...
  19. Campos L., Lisón P., López-Gresa M.P. et al.: Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxy­cinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. - Mol. Plant Microbe. Interact. 27: 1159-1169, 2014. Go to original source...
  20. Canto-Pastor A., Santosa B.A.M.C., Vallia A.A. et al.: Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. - PNAS 116: 2755-2760, 2019. Go to original source...
  21. Chan Y.L., Prasad V., Sanjaya et al.: Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. - Planta 221: 386-393, 2005. Go to original source...
  22. Chen S.-C., Liu A.-R., Zou Z.-R.: Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. - Russ. J. Plant Physiol. 53: 671-677, 2006. Go to original source...
  23. Costa K.D.D., dos Santos P.R., dos Santos A.M.M. et al.: Genetic control of tomato resistance to Ralstonia solanacearum. - Euphytica 215: 136, 2019. Go to original source...
  24. Dahleen L.S., Okubara P.A., Blechl A.E.: Transgenic approaches to combat Fusarium head blight in wheat and barley. - Crop Sci. 41: 628-637, 2001. Go to original source...
  25. Deguine J.-P., Aubertot J.-N., Flor R.J. et al.: Integrated pest management: good intentions, hard realities. A review. - Agron. Sustain. Dev. 41: 38, 2021. Go to original source...
  26. Dong O.X., Ronald P.C.: Genetic engineering for disease resistance in plants: recent progress and future perspectives. - Plant Physiol. 180: 26-38, 2019. Go to original source...
  27. El Hadrami A., El Idrissi-Tourane A., El Hassni M. et al.: Toxin-based in-vitro selection and its potential application to date palm for resistance to the bayoud Fusarium wilt. - C. R. Biol. 328: 732-744, 2005. Go to original source...
  28. Emel'yanov V.I., Kravchuk Zh.N., Polyakovsky S.A., Dmitriev A.P.: Deposition of callose in treatment of cells of the tomato plant (Lycopersicon esculentum L.) with biotic elicitors. - Cytol. Genet. 42: 90-95, 2008. Go to original source...
  29. Erbs G., Newman M.-A.: The role of lipopolysaccharides in induction of plant defence responses. - Mol. Plant Pathol. 4: 421-425, 2003. Go to original source...
  30. Erbs G., Newman M.-A.: The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. - Mol. Plant Pathol. 13: 95-104, 2012. Go to original source...
  31. Fallik E., Bashan Y., Okon Y. et al.: Inheritance and sources of resistance to bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. - Ann. Appl. Biol. 102: 365-371, 1983. Go to original source...
  32. Fallik E., Bashan Y., Okon Y.: Genetics of resistance to bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. - Ann. Appl. Biol. 104: 321-325, 1984. Go to original source...
  33. Francis D.M., Kabelka E., Bell J. et al.: Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. - Plant Dis. 85: 1171-1176, 2001. Go to original source...
  34. Gaj T., Sirk S.J., Shui S.-L., Liu J.: Genome-editing technologies: principles and applications. - CSH Perspect. Biol. 8: a023754, 2016. Go to original source...
  35. Ganeva D., Bogatzevska N.: Sources of resistance to races R0 and R1 of Pseudomonas syringae pv. tomato - agent of bacterial speck on tomato. - Genetika 49: 139-149, 2017. Go to original source...
  36. Ganeva D., Aleksandrova K., Bogatzevska N.: Sources of resistance to races of Xanthomonas vesicatoria - causal agent of bacterial spot of tomatoes. - Turk. J. Agric. Nat. Sci. 1: 1315-1321, 2014.
  37. Garfinkel A.R., Coats K.P., Sherry D.L., Chastagner G.A.: Genetic analysis reveals unprecedented diversity of a globally-important plant pathogenic genus. - Sci. Rep.-UK 9: 6671, 2019. Go to original source...
  38. Gill U.S., Lee S., Mysore K.S.: Host versus nonhost resistance: distinct wars with similar arsenals. - Phytopathology 105: 580-587, 2015. Go to original source...
  39. Girhepuje P.V., Shinde G.B.: Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. - Plant Cell Tiss. Org. Cult. 105: 243-251, 2011. Go to original source...
  40. Glazebrook J.: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. - Annu. Rev. Phytopathol. 43: 205-272, 2005. Go to original source...
  41. Gupta N.S., Acharya K.: Fungal toxin as potential tool for in vitro selection and regeneration of resistant plants. - Asian J. Plant Pathol. 12: 38-45, 2018. Go to original source...
  42. Halder K., Chaudhuri A., Abdin M.Z. et al.: RNA interference for improving disease resistance in plants and its relevance in this clustered regularly interspaced short palindromic repeats-dominated era in terms of dsRNA-based biopesticides. - Front. Plant Sci. 13: 885128, 2022. Go to original source...
  43. Han G.-Z.: Origin and evolution of the plant immune system. - New Phytol. 222: 70-83, 2019. Go to original source...
  44. Hassan J.A., Zhou Y.J., Lewis J.D.: A rapid seedling resistance assay identifies wild tomato lines that are resistant to Pseudomonas syringae pv. tomato race 1. - Mol. Plant Microbe. Interact. 30: 701-709, 2017. Go to original source...
  45. Horvath D.M., Stall R.E., Jones J.B. et al.: Transgenic resistance confers effective field level control of bacterial spot disease in tomato. - PLoS ONE 7: e42036, 2012. Go to original source...
  46. Hou Y., Ma W.: Natural host-induced gene silencing offers new opportunities to engineer disease resistance. - Trends Microbiol. 28: 109-117, 2020. Go to original source...
  47. Huang H.-E., Liu C.-A., Lee M.-J. et al.: Resistance enhancement of transgenic tomato to bacterial pathogens by the heterologous expression of sweet pepper ferredoxin-I protein. - Phytopathology 97: 900-906, 2007. Go to original source...
  48. Huet G.: Breeding for resistances to Ralstonia solanacearum. - Front. Plant Sci. 5: 715, 2014. Go to original source...
  49. Ijaz M., Khan F., Zaki H.E.M. et al.: Recent trends and advancements in CRISPR-based tools for enhancing resistance against plant pathogens. - Plants-Basel 12: 1911, 2023. Go to original source...
  50. Ikeuchi M., Sugimoto K., Iwase A.: Plant callus: mechanisms of induction and repression. - Plant Cell 25: 3159-3173, 2013. Go to original source...
  51. Imada K., Sakai S., Kajihara H. et al.: Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. - Plant Pathol. 65: 551-560, 2016. Go to original source...
  52. Islamov B., Petrova O., Mikshina P. et al.: The role of Pectobacterium atrosepticum exopolysaccharides in plant-pathogen interactions. - Int. J. Mol. Sci. 22: 12781, 2021. Go to original source...
  53. Ivchenko T., Miroshnichenko T., Mozgovska A. et. al.: Modeling of tomato genotypes stress-tolerance by comprehensive assessment on selective media in vitro. - Biol. Life Sci. Forum 4: 107, 2021. Go to original source...
  54. Jan P.-S., Huang H.-Y., Chen H.-M.: Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. - Appl. Environ. Microb. 76: 769-775, 2010. Go to original source...
  55. Jones J.D.G., Dangl J.L.: The plant immune system. - Nature 444: 323-329, 2006. Go to original source...
  56. Jung Y.-J.: Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. - Biotechnol. Bioprocess. Eng. 18: 615-624, 2013. Go to original source...
  57. Jung Y.-J., Kang K.-K.: Application of antimicrobial peptides for disease control in plants. - Plant. Breed. Biotech. 2: 1-13, 2014. Go to original source...
  58. Khaliluev M.R., Shpakovskii G.V.: Genetic engineering strategies for enhancing tomato resistance to fungal and bacterial pathogens. - Russ. J. Plant Physiol. 60: 721-732, 2013. Go to original source...
  59. Khazaei H., Madduri A.: The role of tomato wild relatives in breeding disease-free varieties. - Genet. Resour. 3: 64-73, 2022. Go to original source...
  60. Khoshru B., Mitra D., Joshi K. et al.: Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. - Heliyon 18: e13825, 2023. Go to original source...
  61. Kim S.G., Hur O.-S., Ro N.-Y. et al.: Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. - Plant Pathol. J. 32: 58-64, 2016. Go to original source...
  62. Köhl J., Kolnaar R., Ravensberg W.J.: Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. - Front. Plant Sci. 10: 845, 2019. Go to original source...
  63. Kolomiiets Y.V., Grygoryuk I.P., Butsenko L.M.: Bacterial diseases of tomato plants in terms of open and covered growing of Ukraine. - Ann. Agr. Sci. 15: 213-216, 2017. Go to original source...
  64. Kolomiiets Y.V., Grigoryuk I.P., Butsenko L.M., Kalinichenko A.V.: Biotechnological control methods against phyto­pathogenic bacteria in tomatoes. - Appl. Ecol. Env. Res. 17: 3215-3230, 2019. Go to original source...
  65. Korneeva I.V., Varlamova N.V., Pushin A. et al.: Transgenic tomato plants expressing PR-5 protein genes demonstrated disease resistance against Phytophthora infestans and Xanthomonas vesicatoria. - Acta Hortic. 914: 415-418, 2011. Go to original source...
  66. Koseoglou E., Brouwer M., Mudadirwa D. et al.: Identification of two novel loci underlying tolerance to Clavibacter michiganensis originating from Solanum arcanum LA2157. - Agronomy 13: 953, 2023. Go to original source...
  67. Kozik E.U.: Studies on resistance to bacterial speck (Pseudomonas syringae pv. tomato) in tomato cv. Ontario 7710. - Plant Breeding 121: 526-530, 2002. Go to original source...
  68. Kozik E.U., Nowakowska M.: Genetic and morpho-agronomic evaluation of new tomato breeding lines resistant to bacterial speck (Pseudomonas syringae pv. tomato). - J. Agr. Sci. 2: 200-205, 2010. Go to original source...
  69. Kunwar S., Hsu Y.-C., Lu S.-F. et al.: Characterization of tomato (Solanum lycopersicum) accessions for resistance to phylotype I and phylotype II strains of the Ralstonia solanacearum species complex under high temperatures. - Plant Breeding 139: 389-401, 2020. Go to original source...
  70. Lacombe S., Rougon-Cardoso A., Sherwood E. et al.: Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. - Nat. Biotechnol. 28: 365-369, 2010. Go to original source...
  71. Lavale S.A., Debnath P., Mathew D., Abdelmotelb K.F.: Two decades of omics in bacterial wilt resistance in Solanaceae, what we learned? - Plant Stress 5: 100099, 2022. Go to original source...
  72. Lebeau A., Daunay M.-C., Frary A. et al.: Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. - Phytopathology 101: 154-165, 2011. Go to original source...
  73. Lebeda A., ©vábová L.: In vitro screening methods for assessing plant disease resistance. - In: FAO/IAEA: Mass Screening Techniques For Selecting Crops Resistant To Diseases. Pp. 5-46. International Atomic Energy Agency, Vienna 2010.
  74. Lee T.-J., Coyne P.P., Clemente T.E., Mitra A.: Partial resistance to bacterial wilt in transgenic tomato plants expressing antibacterial lactoferrin gene. - J. Am. Soc. Hortic. Sci. 127: 158-164, 2002. Go to original source...
  75. Li C.-W., Su R.-C., Cheng C.-P. et al.: Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. - Plant Physiol. 156: 213-227, 2011. Go to original source...
  76. Li H., Yang Y., Hong W. et al.: Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. - Signal Transduct. Target. Ther. 5: 1, 2020. Go to original source...
  77. Li L., Steffens J.C.: Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. - Planta 215: 239-247, 2002. Go to original source...
  78. Lin W.-C., Lu C.-F., Wu J.-W. et al.: Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. - Transgenic Res. 13: 567-581, 2004. Go to original source...
  79. López-García B., San Segundo B., Coca M.: Antimicrobial peptides as a promising alternative for plant disease protection. - ACS Symp. Ser. 1095: 263-294, 2012. Go to original source...
  80. Marcos J.F., Muñoz A., Pérez-Payá E. et al.: Identification and rational design of novel antimicrobial peptides for plant protection. - Annu. Rev. Phytopathol. 46: 273-301, 2008. Go to original source...
  81. Maulida I., Murti R.H., Arwiyanto T.: Selection and inheritance of tomato resistance against Ralstonia solanacearum. - J. Perlindungan Tanaman Indonesia 23: 61-67, 2019. Go to original source...
  82. Mazo-Molina C., Mainiero S., Hind S.R. et al.: The Ptr1 locus of Solanum lycopersicoides confers resistance to race 1 strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by recognizing the type III effectors AvrRpt2 and RipBN. - Mol. Plant Microbe. Interact. 32: 949-960, 2019. Go to original source...
  83. McDonald B.A., Stukenbrock E.H.: Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. - Philos. T. Roy. Soc. B 371: 20160026, 2016. Go to original source...
  84. Milling A., Babujee L., Allen C.: Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. - PLoS ONE 6: e15853, 2011. Go to original source...
  85. Mohanta T.K., Bashir T., Hashem A. et al.: Genome editing tools in plants. - Genes-Basel 8: 399, 2017. Go to original source...
  86. Moosa A., Farzand A., Sahi S.T., Khan S.A.: Transgenic expression of antifungal pathogenesis-related proteins against phytopathogenic fungi - 15 years of success. - Israel J. Plant Sci. 65: 38-54, 2017. Go to original source...
  87. Morais T.P., Zaini P.A., Chakraborty S. et al.: The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum. - Plant Sci. 280: 197-205, 2019. Go to original source...
  88. Mostovjiak I.: [Ecological paradigm of integrated plant management.] - Quarant. Plant Protect. 5-6: 12-16, 2019. [In Ukrainian] Go to original source...
  89. Newman M-A., Von Roepenack E., Daniels M., Dow M.: Lipopolysaccharides and plant responses to phytopathogenic bacteria. - Mol. Plant Pathol. 1: 25-31, 2000. Go to original source...
  90. Oldroyd G.E.D., Staskawicz B.J.: Genetically engineered broad-spectrum disease resistance in tomato. - PNAS 95: 10300-10305, 1998. Go to original source...
  91. Ortigosa A., Gimenez-Ibanez S., Leonhardt N., Solano R.: Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. - Plant Biotechnol. J. 17: 665-673, 2019. Go to original source...
  92. Osusky M., Zhou G., Osuska L. et al.: Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. - Nat. Biotechnol. 18: 1162-1166, 2000. Go to original source...
  93. Panno S., Davino S., Caruso A.G. et al.: A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean basin. - Agronomy 11: 2188, 2021. Go to original source...
  94. Patil V.U., Singh R., Vanishree G. et al.: Genetic engineering for enhanced nutritional quality in potato - a review. - Potato J. 43: 1-21, 2016.
  95. Pereira J.A., Yu F., Zhang Y. et al.: The Arabidopsis elongator subunit ELP3 and ELP4 confer resistance to bacterial speck in tomato. - Front. Plant Sci. 9: 1066, 2018. Go to original source...
  96. Pereyra-Bistraín L.I., Ovando-Vázquez C., Rougon-Cardoso A., Alpuche-Solís Á.G.: Comparative RNA-Seq analysis reveals potentially resistance-related genes in response to bacterial canker of tomato. - Genes-Basel 12: 1745, 2021. Go to original source...
  97. Pérez-Clemente R.M., Vives V., Zandalinas S.I. et al.: Biotechnological approaches to study plant responses to stress. - BioMed Res. Int. 2013: 654120, 2013. Go to original source...
  98. Pitblado R.E., MacNeill B.H.: Genetic basis of resistance to Pseudomonas syringae pv. tomato in field tomatoes. - Can. J. Plant Pathol. 5: 251-255, 1983. Go to original source...
  99. Plancarte-De la Torre M.M., Núñez-Palenius H.G., Gómez-Lim M.A.: Tomato transformation with genes involved in plant immunity to confer broad resistance against bacteria. - Rev. Fitotec. Mex. 39: 349-358, 2016.
  100. Preston G.M.: Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. - Mol. Plant Pathol. 1: 263-275, 2000. Go to original source...
  101. Rai M.K., Kalia R.K., Singh R. et al.: Developing stress tolerant plants through in vitro selection - an overview of the recent progress. - Environ. Exp. Bot. 71: 89-98, 2011. Go to original source...
  102. Ranf S., Gisch N., Schäffer M. et al.: A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. - Nat. Immunol. 16: 426-433, 2015. Go to original source...
  103. Rao S., Sandhya H.: In vitro selection of disease-resistant plants. - In: Anis M., Ahmad N. (ed.): Plant Tissue Culture: Propagation, Conservation and Crop Improvement. Pp. 395-417. Springer, Singapore 2016. Go to original source...
  104. Razzaq A., Kaur P., Akhter N. et al.: Next-generation breeding strategies for climate-ready crops. - Front. Plant Sci. 12: 620420, 2021. Go to original source...
  105. Rivera-Sosa L.M., Ramírez-Valverde G., Martínez-Yáñez B. et al.: Response of tomato (Solanum lycopersicum) varieties to Clavibacter michiganensis subsp. michiganensis infection. - Rev. Mex. Fitopatol. 40: 18-39, 2022. Go to original source...
  106. Şanver U., Akköse Baytar A., Özaktan H. et al.: Determination of resistance levels to Clavibacter michiganensis subsp. michiganensis in some Solanum species. - Anadolu 32: 115-123, 2022. Go to original source...
  107. Savidor A., Teper D., Gartemann K.-H. et al.: The Clavibacter michiganensis subsp. michiganensis-tomato interactome reveals the perception of pathogen by the host and suggests mechanisms of infection. - J. Proteome Res. 11: 736-750, 2012. Go to original source...
  108. Scheibner F., Marillonnet S., Büttner D.: The TAL effector AvrBs3 from Xanthomonas campestris pv. vesicatoria contains multiple export signals and can enter plant cells in the absence of the type III secretion translocon. - Front. Microbiol. 8: 2180, 2017. Go to original source...
  109. Scott J.W., Wang J.F., Hanson P.M.: Breeding tomatoes for resistance to bacterial wilt, a global view. - Acta Hortic. 695: 161-172, 2005. Go to original source...
  110. Sen Y., Feng Z., Vandenbroucke H. et al.: Screening for new sources of resistance to Clavibacter michiganensis subsp. michiganensis (Cmm) in tomato. - Euphytica 190: 309-317, 2013. Go to original source...
  111. Sen Y., van der Wolf J., Visser R.G.F., van Heusden S.: Bacterial canker of tomato: current knowledge of detection, management, resistance, and interactions. - Plant Dis. 99: 4-13, 2015. Go to original source...
  112. Sharma S., Bhattarai K.: Progress in developing bacterial spot resistance in tomato. - Agronomy 9: 26, 2019. Go to original source...
  113. Shilina J.V.., Guscha M.I., Molozhava O.S. et al.: [Immunomodulatory properties of bacterial lipopoly­saccharides in Arabidopsis thaliana plants and their modification.] - Plant Physiol. Genet. 49: 121-128, 2017. [In Ukrainian]
  114. Slavov S.: Phytotoxins and in vitro screening fo improved disease resistant plants. - Biotechnol. Biotechnol. Equip. 19: 48-55, 2005. Go to original source...
  115. Stamova L.: Resistance to Pseudomonas syringae pv. tomato race 1. - Acta Hortic. 808: 219-222, 2009. Go to original source...
  116. Stockinger E.J., Walling L.L.: Pto3 and Pto4: novel genes from Lycopersicon hirsutum var. glabratum that confer resistance to Pseudomonas syringae pv tomato. - Theor. Appl. Genet. 89: 879-884, 1994. Go to original source...
  117. Sun W.-Y., Zhao W.-Y., Wang Y.-Y. et al.: Natural variation of Pto and Fen genes and marker-assisted selection for resistance to bacterial speck in tomato. - Agr. Sci. China 10: 827-837, 2011. Go to original source...
  118. ©vábová A., Lebeda J.: In vitro selection for improved plant resistance to toxin-producing pathogens. - J. Phytopathol. 153: 52-64, 2005. Go to original source...
  119. Téllez J., Muñoz-Barrios A., Sopeña-Torres S. et al.: YODA kinase controls a novel immune pathway of tomato conferring enhanced disease resistance to the bacterium Pseudomonas syringae. - Front. Plant Sci. 11: 584471, 2020. Go to original source...
  120. Thapa S.P., Miyao E.M., Davis M.R., Coaker G.: Identification of QTLs controlling resistance to Pseudomonas syringae pv. tomato race 1 strains from the wild tomato, Solanum habrochaites LA1777. - Theor. Appl. Genet. 128: 681-692, 2015. Go to original source...
  121. Thieme F., Koebnik R., Bekel T.: Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. - J. Bacteriol. 187: 7254-7266, 2005. Go to original source...
  122. Thomas N.C., Hendrich C.G., Gill U.S. et al.: The immune receptor Roq1 confers resistance to the bacterial pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in tomato. - Front. Plant Sci. 11: 463, 2020. Go to original source...
  123. Thomazella D.P.T., Seong K., Mackelprang R. et al.: Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. - PNAS 118: e2026152118, 2021. Go to original source...
  124. Varshney R.K., Bohra A., Yu J. et al.: Designing future crops: genomics-assisted breeding comes of age. - Trends Plant Sci. 26: 631-649, 2021. Go to original source...
  125. Wang Y., Deng S., Li Z., Yang W.: Advances in the characterization of the mechanism underlying bacterial canker development and tomato plant resistance. - Horticulturae 8: 209, 2022a. Go to original source...
  126. Wang Y., Zafar N., Ali Q. et al.: CRISPR/Cas genome editing technologies for plant improvement against biotic and abiotic stresses: advances, limitations, and future perspectives. - Cells 11: 3928, 2022b. Go to original source...
  127. Wang Y., Zhang Y., Gao Z., Yang W.: Breeding for resistance to tomato bacterial diseases in China: challenges and prospects. - Hortic. Plant J. 4: 193-207, 2018. Go to original source...
  128. Whitfield C., Trent M.S.: Biosynthesis and export of bacterial lipopolysaccharides. - Annu. Rev. Biochem. 83: 99-128, 2014. Go to original source...
  129. Wittmann J., Brancato C., Berendzen K.W., Dreiseikelmann B.: Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. - Plant Pathol. 65: 496-502, 2016. Go to original source...
  130. Yin K., Qiu J.-L.: Genome editing for plant disease resistance: applications and perspectives. - Philos. T. Roy. Soc. B 374: 20180322, 2019. Go to original source...
  131. Yokotani N., Hasegawa Y., Sato M. et al.: Transcriptome analysis of Clavibacter michiganensis subsp. michiganensis-infected tomatoes: a role of salicylic acid in the host response. - BMC Plant Biol. 21: 476, 2021. Go to original source...
  132. Yu Z.H., Wang J.F., Stall R.E., Vallejos C.E.: Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) dye. - Genetics 141: 675-682, 1995. Go to original source...
  133. Zdorovenko G.M., Zdorovenko E.L.: Pseudomonas syringae lipopolysaccharides: immunochemical characteristics and structure as a basis for strain classification. - Microbiology 79: 47-57, 2010. Go to original source...
  134. Zimny T.: New genomic techniques and their European Union reform. Potential policy changes and their implications. - Front. Bioeng. Biotechnol. 10: 1019081, 2022. Go to original source...