biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 68:12-21, 2024 | DOI: 10.32615/bp.2023.016

Auxins and environmental factors regulate root gravitropism

Z. Tang1, 3, Y. Zhang1, Y. Ma2, 4, D. Zhao2, 4, *, J. Dong1, 3, *, H. Zhang1, 4, *
1 College of Life Sciences, Hebei Agricultural University, Baoding, 071001, P.R. China
2 College of Life Sciences, Hengshui University, Hengshui, 053000, P.R. China
3 College of Plant Protection, Hebei Agricultural University, Baoding, 071001, P.R. China
4 College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China

Roots are important for plant anchoring, water and nutrient absorption, and other physiological processes. Gravity is a primary determinant of the spatial distribution of plant roots in the soil. Therefore, in-depth understanding of the molecular mechanisms and biochemical networks of root responses to gravity has both theoretical and practical significance in guiding the genetic improvement of plants. Gravitropism, the process through which plants sense the direction of gravity and respond by making the roots grow downward and the stem grow upward, has been widely studied in roots. The perception of gravity and the gravitational growth of roots, key steps in root growth and development, are regulated by auxins and other factors. Here, we review the latest progress in the regulation of root gravitropism by hormone signals and environmental factors from a molecular perspective, and look forward to the direction of future research on root gravitropism.

Keywords: environmental factors, phytohormones, positive and negative gravitropism.

Received: September 1, 2022; Revised: April 29, 2023; Accepted: May 5, 2023; Published online: January 22, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tang, Z., Zhang, Y., Ma, Y., Zhao, D., Dong, J., & Zhang, H. (2024). Auxins and environmental factors regulate root gravitropism. Biologia plantarum68, Article 12-21. https://doi.org/10.32615/bp.2023.016
Download citation

References

  1. Abel S.: Auxin is surfacing. - ACS Chem. Biol. 2: 380-384, 2007. Go to original source...
  2. Andreeva Z., Barton D., Armour W.J. et al.: Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. - Planta 232: 1263-1279, 2010. Go to original source...
  3. Bailey P.H.J., Currey J.D., Fitter A.H.: The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana. - J. Exp. Bot. 53: 333-340, 2002. Go to original source...
  4. Baldwin K.L., Strohm A.K., Masson P.H.: Gravity sensing and signal transduction in vascular plant primary roots. - Am. J. Bot. 100: 126-142, 2013. Go to original source...
  5. Baluska F., Hasenstein K.H.: Root cytoskeleton: its role in perception of and response to gravity. - Planta 203: S69-S78, 1997. Go to original source...
  6. Barbosa I.C.R., Zourelidou M., Willige B.C. et al.: D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. - Dev. Cell 29: 674-685, 2014. Go to original source...
  7. Baster P., Robert S., Kleine-Vehn J. et al.: SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. - EMBO J. 32: 260-274, 2013. Go to original source...
  8. Berleth T., Krogan N.T., Scarpella E.: Auxin signals - turning genes on and turning cells around. - Curr. Opin. Plant Biol. 7: 553-563, 2004. Go to original source...
  9. Blancaflor E.B., Fasano J.M., Gilroy S.: Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. - Plant Physiol. 116: 213-222, 1998. Go to original source...
  10. Blancaflor E.B., Masson P.H.: Plant gravitropism. Unraveling the ups and downs of a complex process. - Plant Physiol. 133: 1677-1690, 2003. Go to original source...
  11. Bouchard R., Bailly A., Blakeslee J.J. et al.: Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. - J. Biol. Chem. 281: 30603-30612, 2006. Go to original source...
  12. Cecchetti V., Brunetti P., Napoli N. et al.: ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. - J. Integr. Plant Biol. 57: 1089-1098, 2015. Go to original source...
  13. Cséplõ Á., Zsigmond L., Andrási N. et al.: The AtCRK5 protein kinase is required to maintain the ROS NO balance affecting the PIN2-mediated root gravitropic response in Arabidopsis. - Int. J. Mol. Sci. 22: 5979, 2021.
  14. Desbrosses G., Josefsson C., Rigas S. et al.: AKT1 and TRH1 are required during root hair elongation in Arabidopsis. - J. Exp. Bot. 54: 781-788, 2003. Go to original source...
  15. Dharmasiri S., Swarup R., Mockaitis K. et al.: AXR4 is required for localization of the auxin influx facilitator AUX1. - Science 312: 1218-1220, 2006. Go to original source...
  16. Digby J., Firn R.D.: The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. - Plant Cell Environ. 18: 1434-1440, 1995. Go to original source...
  17. Evans N.H., McAinsh M.R., Hetherington A.M., Knight M.R.: ROS perception in Arabidopsis thaliana: the ozone-induced calcium response. - Plant J. 41: 615-626, 2005. Go to original source...
  18. Fasano J.M., Swanson S.J., Blancaflor E.B. et al.: Changes in root cap pH are required for the gravity response of the Arabidopsis root. - Plant Cell 13: 907-921, 2001. Go to original source...
  19. Firn R.D., Digby J.: Solving the puzzle of gravitropism - has a lost piece been found? - Planta 203: S159-S163, 1997. Go to original source...
  20. Firn R.D., Wagstaff C., Digby J.: The use of mutants to probe models of gravitropism. - J. Exp. Bot. 51: 1323-1340, 2000. Go to original source...
  21. Friml J., Palme K.: Polar auxin transport - old questions and new concepts? - Plant Mol. Biol. 49: 273-284, 2002. Go to original source...
  22. Friml J., Wi¶niewska J., Benková E. et al.: Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. - Nature 415: 806-809, 2002. Go to original source...
  23. Friml J., Yang X., Michniewicz M. et al.: A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. - Science 306: 862-865, 2004. Go to original source...
  24. Gallavotti A.: The role of auxin in shaping shoot architecture. - J. Exp. Bot. 64: 2593-2608, 2013. Go to original source...
  25. Ganguly A., Cho H.-T.: The phosphorylation code is implicated in cell type-specific trafficking of PIN-FORMEDs. - Plant Signal. Behav. 7: 1215-1218, 2012. Go to original source...
  26. Ganguly A., Lee S.-H., Cho H.-T.: Functional identification of the phosphorylation sites of Arabidopsis PIN-FORMED3 for its subcellular localization and biological role. - Plant J. 71: 810-823, 2012. Go to original source...
  27. Ganguly A., Park M., Kesawat M.S., Cho H.-T.: Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins. - Plant Cell 26: 1570-1585, 2014. Go to original source...
  28. Ge Z., Rubio G., Lynch J.P.: The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. - Plant Soil 218: 159-171, 2000. Go to original source...
  29. Han H., Rakusová H., Verstraeten I. et al.: SCFTIR1/AFB auxin signaling for bending termination during shoot gravitropism. - Plant Physiol. 183: 37-40, 2020. Go to original source...
  30. Han W., Rong H., Zhang H. et al.: Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana. - Biochem. Biophys. Res. Commun. 378: 695-700, 2009. Go to original source...
  31. Hashiguchi Y., Tasaka M., Morita M.T.: Mechanism of higher plant gravity sensing. - Am. J. Bot. 100: 91-100, 2013. Go to original source...
  32. Hazak O., Mamon E., Lavy M. et al.: A novel Ca2+-binding protein that can rapidly transduce auxin responses during root growth. - PLoS Biol. 17: e3000085, 2019. Go to original source...
  33. He Y., Yan L., Ge C. et al.: PINOID is required for formation of the stigma and style in rice. - Plant Physiol. 180: 926-936, 2019. Go to original source...
  34. Hobbie L.J.: Auxin and cell polarity: the emergence of AXR4. - Trends Plant Sci. 11: 517-518, 2006. Go to original source...
  35. Holland J.J., Roberts D., Liscum E.: Understanding phototropism: from Darwin to today. - J. Exp. Bot. 60: 1969-1978, 2009. Go to original source...
  36. Hu X., Neill S.J., Tang Z. et al.: Nitric oxide mediates gravitropic bending in soybean roots. - Plant Physiol. 137: 663-670, 2005. Go to original source...
  37. Joo J.H., Bae Y.S., Lee J.S.: Role of auxin-induced reactive oxygen species in root gravitropism. - Plant Physiol. 126: 1055-1060, 2001. Go to original source...
  38. Kato T., Morita M.T., Fukaki H. et al.: SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. - Plant Cell 14: 33-46, 2002. Go to original source...
  39. Kazan K.: Auxin and the integration of environmental signals into plant root development. - Ann. Bot.-London 112: 1655-1665, 2013. Go to original source...
  40. Keizer J., Li Y.X., Stojilkoviæ S., Rinzel J.: InsP3-induced Ca2+ excitability of the endoplasmic reticulum. - Mol. Biol. Cell 6: 945-951, 1995. Go to original source...
  41. Kidokoro S., Shinozaki K., Yamaguchi-Shinozaki K.: Transcriptional regulatory network of plant cold-stress responses. - Trends Plant Sci. 27: 922-935, 2022. Go to original source...
  42. Kiss J.Z.: Mechanisms of the early phases of plant gravitropism. - Crit. Rev. Plant Sci. 19: 551-573, 2000. Go to original source...
  43. Kleine-Vehn J., Ding Z., Jones A.R. et al.: Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. - PNAS 107: 22344-22349, 2010. Go to original source...
  44. Kleine-Vehn J., £angowski £., Wisniewska J. et al.: Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. - Mol. Plant 1: 1056-1066, 2008. Go to original source...
  45. Konstantinova N., Hoermayer L., Glanc M. et al.: WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions. - Nat. Commun. 13: 5147, 2022. Go to original source...
  46. Laohavisit A., Shang Z., Rubio L. et al.: Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca<sup>2</sup>+- and K+-permeable conductance in root cells. - Plant Cell 24: 1522-1533, 2012. Go to original source...
  47. Lee J.S., Mulkey T.J., Evans M.L.: Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors. - Planta 160: 536-543, 1984. Go to original source...
  48. Le¹ková A., Zvarík M., Araya T., Giehl R.F.H.: Nickel toxicity targets cell wall-related processes and PIN2-mediated auxin transport to inhibit root elongation and gravitropic responses in Arabidopsis. - Plant Cell Physiol. 61: 519-535, 2020. Go to original source...
  49. Leyser O.: Regulation of shoot branching by auxin. - Trends Plant Sci. 8: 541-545, 2003. Go to original source...
  50. Li J., Lis K.E., Timko M.P.: Molecular genetics of race-specific resistance of cowpea to Striga gesnerioides (Willd.). - Pest Manag. Sci. 65: 520-527, 2009. Go to original source...
  51. Li S.-W., Zeng X.-Y., Leng Y. et al.: Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses. - Ecotox. Environ. Safe. 161: 332-341, 2018. Go to original source...
  52. Li Y., Yuan W., Li L. et al.: Light-dark modulates root hydrotropism associated with gravitropism by involving amyloplast response in Arabidopsis. - Cell Rep. 32: 108198, 2020. Go to original source...
  53. Marchant A., Kargul J., May S.T. et al.: AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. - EMBO J. 18: 2066-2073, 1999. Go to original source...
  54. Marquès-Bueno M.M., Armengot L., Noack L.C. et al.: Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism. - Curr. Biol. 31: 228-237, 2021. Go to original source...
  55. Masson P.H.: Root gravitropism. - BioEssays 17: 119-127, 1995. Go to original source...
  56. Mesland D.A.M.: Mechanisms of gravity effects on cells: are there gravity-sensitive windows? - Adv. Space Biol. Med. 2: 211-228, 1992. Go to original source...
  57. Monshausen G.B., Miller N.D., Murphy A.S., Gilroy S.: Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. - Plant J. 65: 309-318, 2011. Go to original source...
  58. Mur L.A.J., Kenton P., Draper J.: In planta measurements of oxidative bursts elicited by avirulent and virulent bacterial pathogens suggests that H2O2 is insufficient to elicit cell death in tobacco. - Plant Cell Environ. 28: 548-561, 2005. Go to original source...
  59. Muto H., Nagao I., Demura T. et al.: Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of Arabidopsis expressed in HeLa cells. - Plant Cell Physiol. 47: 1095-1101, 2006. Go to original source...
  60. Nakamura M., Toyota M., Tasaka M., Morita M.T.: An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. - Plant Cell 23: 1830-1848, 2011. Go to original source...
  61. Navarro L., Dunoyer P., Jay F. et al.: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. - Science 312: 436-439, 2006. Go to original source...
  62. Oh E., Seo P.J., Kim J.: Signaling peptides and receptors coordinating plant root development. - Trends Plant Sci. 23: 337-351, 2018. Go to original source...
  63. Okushima Y., Overvoorde P.J., Arima K. et al.: Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. - Plant Cell 17: 444-463, 2005. Go to original source...
  64. Ottenschläger I., Wolff P., Wolverton C. et al.: Gravity-regulated differential auxin transport from columella to lateral root cap cells. - PNAS 100: 2987-2991, 2003. Go to original source...
  65. Paciorek T., Za¾ímalová E., Ruthardt N. et al.: Auxin inhibits endocytosis and promotes its own efflux from cells. - Nature 435: 1251-1256, 2005. Go to original source...
  66. Palme K., Nagy F.: A new gene for auxin synthesis. - Cell 133: 31-32, 2008. Go to original source...
  67. Pei Z.-M., Murata Y., Benning G. et al.: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. - Nature 406: 731-734, 2000. Go to original source...
  68. Perera I.Y., Hung C.-Y., Brady S. et al.: A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. - Plant Physiol. 140: 746-760, 2006. Go to original source...
  69. Perrin R.M., Young L.-S., Murthy U.M.N. et al.: Gravity signal transduction in primary roots. - Ann. Bot.-London 96: 737-743, 2005. Go to original source...
  70. Potikha T.S., Collins C.C., Johnson D.I. et al.: The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. - Plant Physiol. 119: 849-858, 1999. Go to original source...
  71. Rakusová H., Gallego-Bartolomé J., Vanstraelen M. et al.: Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. - Plant J. 67: 817-826, 2011. Go to original source...
  72. Rakusová H., Han H., Valo¹ek P., Friml J.: Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls. - Plant J. 98: 1048-1059, 2019. Go to original source...
  73. Ramachandra Reddy A., Chaitanya K.V., Vivekanandan M.: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. - J. Plant Physiol. 161: 1189-1202, 2004. Go to original source...
  74. Rath M., Dümmer M., Galland P., Forreiter C.: A gravitropic stimulus alters the distribution of EHB1, a negative effector of root gravitropism in Arabidopsis. - Plant Direct 4: e00215, 2020. Go to original source...
  75. Roderick H.L., Bootman M.D.: Bi-directional signalling from the InsP3 receptor: regulation by calcium and accessory factors. - Biochem. Soc. T. 31: 950-953, 2003. Go to original source...
  76. Romero-Puertas M.C., Rodríguez-Serrano M., Corpas F.J. et al.: Cadmium-induced subcellular accumulation of O2*-.and H2O2 in pea leaves. - Plant Cell Environ. 27: 1122-1134, 2004. Go to original source...
  77. Sack F.D.: Plastids and gravitropic sensing. - Planta 203: S63-S68, 1997. Go to original source...
  78. Sakai T., Mochizuki S., Haga K. et al.: The WAVY GROWTH 3 E3 ligase family controls the gravitropic response in Arabidopsis roots. - Plant J. 70: 303-314, 2012. Go to original source...
  79. Schoenaers S., Balcerowicz D., Breen G. et al.: The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth. - Curr. Biol. 28: 722-732.e6, 2018. Go to original source...
  80. Scott A.C., Allen N.S.: Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. - Plant Physiol. 121: 1291-1298, 1999. Go to original source...
  81. Shalata A., Mittova V., Volokita M. et al.: Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. - Physiol. Plantarum 112: 487-494, 2001. Go to original source...
  82. Staves M.P., Wayne R., Leopold A.C.: Cytochalasin D does not inhibit gravitropism in roots. - Am. J. Bot. 84: 1530-1535, 1997. Go to original source...
  83. Sukumar P., Edwards K.S., Rahman A. et al.: PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. - Plant Physiol. 150: 722-735, 2009. Go to original source...
  84. Sun F., Zhang W., Hu H. et al.: Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. - Plant Physiol. 146: 178-188, 2008. Go to original source...
  85. Swarup R., Friml J., Marchant A. et al.: Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. - Gene. Dev. 15: 2648-2653, 2001. Go to original source...
  86. Swarup R., Kramer E.M., Perry P. et al.: Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. - Nat. Cell Biol. 7: 1057-1065, 2005. Go to original source...
  87. Tanaka-Takada N., Kobayashi A., Takahashi H. et al.: Plasma membrane-associated Ca2+-binding protein PCaP1 is involved in root hydrotropism of Arabidopsis thaliana. - Plant Cell Physiol. 60: 1331-1341, 2019. Go to original source...
  88. Tatematsu K., Kumagai S., Muto H. et al.: MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. - Plant Cell 16: 379-393, 2004. Go to original source...
  89. Taufiq-Ur-Rahman, Skupin A., Falcke M., Taylor C.W.: Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+. - Nature 458: 655-659, 2009. Go to original source...
  90. Tsugeki R., Fedoroff N.V.: Genetic ablation of root cap cells in Arabidopsis. - PNAS 96: 12941-12946, 1999. Go to original source...
  91. Urbina D.C., Silva H., Meisel L.A.: The Ca2+ pump inhibitor, thapsigargin, inhibits root gravitropism in Arabidopsis thaliana. - Biol. Res. 39: 289-296, 2006. Go to original source...
  92. Vicente-Agullo F., Rigas S., Desbrosses G. et al.: Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. - Plant J. 40: 523-535, 2004. Go to original source...
  93. Vitha S., Yang M., Sack F.D., Kiss J.Z.: Gravitropism in the starch excess mutant of Arabidopsis thaliana. - Am. J. Bot. 94: 590-598, 2007. Go to original source...
  94. Waidmann S., Kleine-Vehn J.: Asymmetric cytokinin signaling opposes gravitropism in roots. - J. Integr. Plant Biol. 62: 882-886, 2020. Go to original source...
  95. Watanabe S., Takahashi N., Kanno Y. et al.: The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. - PNAS 117: 31500-31509, 2020. Go to original source...
  96. White P.J.: The pathways of calcium movement to the xylem. - J. Exp. Bot. 52: 891-899, 2001. Go to original source...
  97. Willige B.C., Ahlers S., Zourelidou M. et al.: D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. - Plant Cell 25: 1674-1688, 2013. Go to original source...
  98. Wi¶niewska J., Xu J., Seifertová D. et al.: Polar PIN localization directs auxin flow in plants. - Science 312: 883, 2006. Go to original source...
  99. Wolverton C., Paya A.M., Toska J.: Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant. - Physiol. Plantarum 141: 373-382, 2011. Go to original source...
  100. Yang P., Wen Q., Yu R. et al.: Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of LAZY4 expression in Arabidopsis. - PNAS 117: 18840-18848, 2020. Go to original source...
  101. Yuan F., Yang H., Xue Y. et al.: OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. - Nature 514: 367-371, 2014. Go to original source...
  102. Zhang H., Guo L., Li Y. et al.: TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars. - Nat. Plants 8: 792-801, 2022b. Go to original source...
  103. Zhang H., Tang Z., Zhang Y. et al.: TOP1α suppresses lateral root gravitropism in Arabidopsis. - Plant Signal. Behav. 17: 2098646, 2022c. Go to original source...
  104. Zhang X., Zhang L., Dong F. et al.: Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. - Plant Physiol. 126: 1438-1448, 2001. Go to original source...
  105. Zhang Y., Ma Y., Zhao D. et al.: Genetic regulation of lateral root development. - Plant Signal. Behav. 2081397, 2022a. Go to original source...