biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 68:22-30, 2024 | DOI: 10.32615/bp.2023.035

Putrescine priming effects on chlorophyll fluorescence, antioxidant enzyme activity, and primary metabolite accumulation in maize seedlings under water deficit

C.C. Toledo1, A.C.C. Da Silva1, M.C. Del Peloso1, M.A. Leite1, L.A.A. Bressanin2, G. EsteveS2, P.C. Magalhães3, T.C. De Souza2, P.R. Dos Santos-Filho1, *
1 Federal University of Alfenas - UNIFAL-MG, Biochemistry Departament, Alfenas, MG, 37130-001, Brazil
2 Federal University of Alfenas - UNIFAL-MG, Institute of Natural Sciences, Alfenas, MG, 37130-001, Brazil
3 Maize and Sorghum National Research Center, Sete Lagoas, MG, 35701-970, Brazil

This study aimed to evaluate the effect of putrescine priming on the initial growth, chlorophyll fluorescence, primary metabolites accumulation, and antioxidant enzyme activities in two maize hybrids with contrasting drought tolerances. Seeds of Zea mays L. hybrids DKB 390 (drought tolerant) and BRS 1030 (drought sensitive) were primed with putrescine (10 or 100 µM). Paper rolls moistened with distilled water or mannitol (-0.6 MPa) were maintened at 30°C for 7 d. The growth parameters were higher in the DKB hybrid than in the BRS hybrid. Putrescine priming (10 µM) promoted the root growth of BRS at levels similar to those of DKB and improved photochemical and non-photochemical quenching and maximum quantum efficiency of BRS seedlings. Higher levels of reducing sugars were found in DKB seedlings when compared to BRS in both roots and leaves, especially with 100 µM putrescine. Total soluble sugar and starch were lower in the maize roots under water deficit and with 10 µM putrescine for both hybrids. BRS seedlings showed higher starch content in the leaves in the control and 10 µM putrescine treatments. Superoxide dismutase was activated in BRS plants by the priming, especially in the roots, but this effect was not observed for catalase, ascorbate, or guaiacol peroxidase, although the DKB seedlings presented much higher guaiacol peroxidade activity than BRS seedlings in both the roots and shoots. In conclusion, putrescine priming (10 M) improved the morphological and biochemical responses of the drought sensitive maize hybrid BRS.

Keywords: antioxidant enzymes, chlorophyll fluorescence, photochemical quenching, polyamines, sugars.

Received: May 23, 2023; Revised: October 23, 2023; Accepted: October 26, 2023; Published online: April 12, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Toledo, C.C., Da Silva, A.C.C., Del Peloso, M.C., Leite, M.A., Bressanin, L.A.A., EsteveS, G., ... Dos Santos-Filho, P.R. (2024). Putrescine priming effects on chlorophyll fluorescence, antioxidant enzyme activity, and primary metabolite accumulation in maize seedlings under water deficit. Biologia plantarum68, Article 22-30. https://doi.org/10.32615/bp.2023.035
Download citation

References

  1. AbdElgawad H., Avramova V., Baggerman G. et al.: Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. - Plant Cell Environ. 43: 2254-2271, 2020. Go to original source...
  2. Alcântara B.K., Machemer-Noonan K., Silva Júnior F.G., Azevedo R.A.: Dry priming of maize seeds reduces aluminum stress. - PLoS ONE 10: e0145742, 2015. Go to original source...
  3. Avila R., Magalhães P.C., De Alvarenga A.A. et al.: [Drought-tolerant maize genotypes invest in root system and maintain high harvest index during water stress.] - Rev. Bras. Milho Sorgo 15: 450-460, 2016. [In Portuguese] Go to original source...
  4. Avramova V., AbdElgawad H., Vasileva I. et al.: High antioxidant activity facilitates maintenance of cell division in leaves of drought tolerant maize hybrids. - Front. Plant Sci. 8: 84, 2017. Go to original source...
  5. Badawy E.M., Kandil M.M., Habib A.M., El-Sayed I.M.: Influence of diatomite, putrescine and alpha-tocopherol on some vegetative growth and flowering of Antirrhinum majus L. plants. - J. Hortic. Sci. Ornam. Plants 7: 7-18, 2015.
  6. Bhupenchandra I., Chongtham S.K., Devi E.L. et al.: Role of biostimulants in mitigating the effects of climate change on crop performance. - Front. Plant Sci. 13: 967665, 2022. Go to original source...
  7. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  8. Brasil: [Rules for Seed Analysis.] Ministry of Agriculture, Livestock and Supply. Pp. 399. Mapa/ACS, Brasília 2009. [In Portuguese]
  9. Chugh V., Kaur N., Grewal M.S., Gupta A.K.: Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. - Indian J. Biochem. Bio. 50: 150-158, 2013.
  10. Doneva D., Pál M., Brankova L. et al.: The effects of putrescine pre-treatment on osmotic stress responses in drought-tolerant and drought-sensitive wheat seedlings. - Physiol. Plantarum 171: 200-216, 2021. Go to original source...
  11. Evans P.T., Malmberg R.L.: Do polyamines have roles in plant development? - Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 235-269, 1989. Go to original source...
  12. Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management. - Agron. Sustain. Dev. 29: 185-212, 2009. Go to original source...
  13. García-Limones C., Hervás A., Navas-Cortés J.A. et al.: Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. - Physiol. Mol. Plant P. 61: 325-337, 2002. Go to original source...
  14. Gill S.S., Tuteja N.: Polyamines and abiotic stress tolerance in plants. - Plant Signal. Behav. 5: 26-33, 2010. Go to original source...
  15. González-Hernández A.I., Scalschi L., Vicedo B. et al.: Putrescine: a key metabolite involved in plant development, tolerance and resistance responses to stress. - Int. J. Mol. Sci. 23: 2971, 2022. Go to original source...
  16. Huang B., Chen Y.-E., Zhao Y.-Q. et al.: Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. - Front. Plant Sci. 10: 677, 2019. Go to original source...
  17. Hussein H.-A.A., Alshammari S.O., Abd El-Sadek et al.: The promotive effect of putrescine on growth, biochemical constituents, and yield of wheat (Triticum aestivum L.) plants under water stress. - Agriculture 13: 587, 2023. Go to original source...
  18. Ioannidis N.E., Kotzabasis K.: Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. - BBA-Bioenergetics 1767: 1372-1382, 2007. Go to original source...
  19. Ioannidis N.E., Sfichi-Duke L., Kotzabasis K.: Polyamines stimulate non-photochemical quenching of chlorophyll a fluorescence in Scenedesmus obliquus. - Photosynth. Res. 107: 169-175, 2011. Go to original source...
  20. Islam M.J., Mou M.A., Razzak M.A., Lim Y.S.: Exogenous putrescine-mediated modulation of drought stress tolerance in sugar beet: possible mechanisms. - In: Misra V., Srivastava S., Mall A.K. (ed.): Sugar Beet Cultivation, Management and Processing. Pp. 441-457. Springer, Singapore 2022a. Go to original source...
  21. Islam M.J., Ryu B.R., Azad M.O.K. et al.: Exogenous putrescine enhances salt tolerance and ginsenosides content in Korean ginseng (Panax ginseng Meyer) sprouts. - Plants-Basel 10: 1313, 2021. Go to original source...
  22. Islam M.J., Uddin M.J., Hossain M.A. et al.: Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.). - PLoS ONE 17: e0262099, 2022b. Go to original source...
  23. Junges E., Toebe M., Santos R.F.D. et al.: Effect of priming and seed-coating when associated with Bacillus subtilis in maize seeds. - Rev. Cienc. Agron. 44: 520-526, 2013. Go to original source...
  24. Kakkar R.K., Sawhney V.K.: Polyamine research in plants - a changing perspective. - Physiol. Plantarum 116: 281-292, 2002. Go to original source...
  25. Kränzlein M., Geilfus C.-M., Franzisky B.L. et al.: Physiological responses of contrasting maize (Zea mays L.) hybrids to repeated drought. - J. Plant Growth Regul. 41: 2708-2718, 2022. Go to original source...
  26. Kusano T., Berberich T., Tateda C., Takahashi Y.: Polyamines: essential factors for growth and survival. - Planta 228: 367-381, 2008. Go to original source...
  27. Li L., Gu W., Li J. et al.: Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. - Plant Physiol. Biochem. 129: 35-55, 2018. Go to original source...
  28. Li W.U., Zhang X., Ashraf U. et al.: Dynamics of seed germination, seedling growth and physiological responses of sweet corn under PEG-induced water stress. - Pak. J. Bot. 49: 639-646, 2017.
  29. Lopes M.S., Araus J.L., van Heerden P.D.R., Foyer C.H.: Enhancing drought tolerance in C4 crops. - J. Exp. Bot. 62: 3135-3153, 2011. Go to original source...
  30. Meddich A.: Biostimulants for resilient agriculture - Improving plant tolerance to abiotic stress: A concise review. - Gesunde Pflanz. 75: 709-727, 2023. Go to original source...
  31. Miller G.L.: Use o dinitrosalicylic acid reagent for determination of reducing sugar. - Anal. Chem. 31: 426-428, 1959. Go to original source...
  32. Namjoyan S., Sorooshzadeh A., Rajabi A., Aghaalikhani M.: Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. - Acta Physiol. Plant. 42: 157, 2020. Go to original source...
  33. Nandy S., Das T., Tudu C.K. et al.: Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. - Appl. Microbiol. Biot. 106: 905-929, 2022. Go to original source...
  34. Pallaoro D.S., Avelino A.C.D., Camili E.C., Guimarães S.C.: Priming corn seeds with plant growth regulator. - J. Seed Sci. 38: 227-232, 2016. Go to original source...
  35. Pandey V.P., Awasthi M., Singh S. et al.: A comprehensive review on function and application of plant peroxidases. - Biochem. Anal. Biochem. 6: 308, 2017. Go to original source...
  36. Prazeres C.S., Coelho C.M.M.: Osmolyte accumulation and antioxidant metabolism during germination of vigorous maize seeds subjected to water deficit. - Acta Sci.-Agron. 42: e42476, 2020. Go to original source...
  37. Queiroz R.J.B., Cazetta J.O.: Proline and trehalose in maize seeds germinating under low osmotic potentials. - Rev. Bras. Eng. Agr. Amb. 20: 22-28, 2016. Go to original source...
  38. Sánchez-Linares L., Gavilanes-Ruíz M., Díaz-Pontones D. et al.: Early carbon mobilization and radicle protrusion in maize germination. - J. Exp. Bot. 63: 4513-4526, 2012. Go to original source...
  39. Souza T.C., Castro E.M., Magalhaes P.C. et al.: Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. - Acta Physiol. Plant. 35: 3201-3211, 2013. Go to original source...
  40. Souza T.C., Magalhães P.C., Castro E.M. et al.: Corn root morphoanatomy at different development stages and yield under water stress. - Pesqui. Agropecu. Bras. 51: 330-339, 2016. Go to original source...
  41. Tyagi A., Ali S., Ramakrishna G. et al.: Revisiting the role of polyamines in plant growth and abiotic stress resilience: mechanisms, crosstalk, and future perspectives. - J. Plant Growth Regul. 42: 5074-5098, 2023. Go to original source...
  42. van Amerongen H., Chmeliov J.: Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. - BBA-Bioenergetics 1861: 148119, 2020. Go to original source...
  43. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  44. Voko M.P., Kulkarni M.G., Finnie J.F., Van Staden J.: Seed priming with vermicompost leachate, Ecklonia maxima extract-Kelpak® and smoke-water induce heat stress amelioration and growth in Vigna unguiculata L. seedlings. - S. Afr. J. Bot. 147: 686-696, 2022. Go to original source...
  45. Xin L., Zheng H., Yang Z. et al.: Physiological and proteomic analysis of maize seedling response to water deficiency stress. - J. Plant Physiol. 228: 29-38, 2018. Go to original source...
  46. Yemm E.W., Willis A.J.: The estimation of carbohydrates in plant extracts by anthrone. - Biochem. J. 57: 508-514, 1954. Go to original source...
  47. Zhang X., Lei L., Lai J. et al.: Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. - BMC Plant Biol. 18: 68, 2018. Go to original source...