biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 68:39-49, 2024 | DOI: 10.32615/bp.2024.002

Plant secondary metabolites: flavonoids and their glycosylation modification

A.J. Zhao, R. Li, W.Y. Guo, K. Lei, L.S. Ji, P. Li*
School of Pharmacy, Liaocheng University, Liaocheng, Shandong, 250000, P.R. China

Flavonoids are a class of phenolic compounds that are widely distributed in nature. They have a variety of physiological and pharmacological activities. They exist in free form or in the form of glycosides. The glycosylation occurs by glycosyltransferases, which is a common modification of plant secondary metabolites and the last step of their biosynthesis. Glycosylation can increase the diversity of the structure and function of flavonoids, and is currently a research hotspot. Based on the classification of flavonoids, this paper describes and summarizes the biotransformation and characteristics of glycosylation modification of flavonoids with different structural types, and describes the effects of enzymatic glycosylation using different types of glycosyltransferases on the biological activity and function of flavonoids depending on sugar connection position, sugar quantity, and type. This paper provides a reference for the development and application of flavonoids glycosylation and glycosyltransferases and also opens up a new direction for plant breeding.

Keywords: anthocyanins, biological activity, flavonoids, glycosylation, glycosyltransferase.

Received: April 18, 2023; Revised: September 23, 2023; Accepted: February 12, 2024; Published online: May 13, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhao, A.J., Li, R., Guo, W.Y., Lei, K., Ji, L.S., & Li, P. (2024). Plant secondary metabolites: flavonoids and their glycosylation modification. Biologia plantarum68, Article 39-49. https://doi.org/10.32615/bp.2024.002
Download citation

Supplementary files

Download file7019_Zhao_Suppl.pdf

File size: 414.2 kB

References

  1. Aquila S., Giner R.M., Recio M.C. et al.: Anti-inflammatory activity of flavonoids from Cayaponia tayuya roots. - J. Ethnopharmacol. 121: 333-337, 2009. Go to original source...
  2. Bao W., Wang D., Chen Y.: Classification of protein structure classes on flexible neutral tree. - IEEE/ACM Trans. Comput. Biol. Bioinform. 14: 1122-1133, 2017. Go to original source...
  3. Billard C., Kern C., Tang R. et al.: Flavopiridol downregulates the expression of both the inducible NO synthase and p27kip1 in malignant cells from B-cell chronic lymphocytic leukemia. - Leukemia 17: 2435-2443, 2003. Go to original source...
  4. Bowles D., Lim E.-K., Poppenberger B., Vaistij F.E.: Glycosyltransferases of lipophilic small molecules. - Annu. Rev. Plant Biol. 57: 567-597, 2006. Go to original source...
  5. Brazier-Hicks M., Evans K.M., Gershater M.C. et al.: The C-glycosylation of flavonoids in cereals. - J. Biol. Chem. 284: 17926-17934, 2009. Go to original source...
  6. Brouillard R.: The in vivo expression of anthocyanin colour in plants. - Phytochemistry 22: 1311-1323, 1983. Go to original source...
  7. Chen J., Li G., Zhang H. et al.: Primary bitter taste of citrus is linked to a functional allele of the 1,2-rhamnosyltransferase gene originating from Citrus grandis. - J. Agr. Food Chem. 69: 9869-9882, 2021. Go to original source...
  8. Chen J., Yuan Z., Zhang H. et al.: Cit1,2RhaT and two novel CitdGlcTs participate in flavor-related flavonoid metabolism during citrus fruit development. - J. Exp. Bot. 70: 2759-2771, 2019. Go to original source...
  9. Chen S., Wang X., Cheng Y. et al.: A review of classification, biosynthesis, biological activities and potential applications of flavonoids. - Molecules 28: 4982, 2023. Go to original source...
  10. Cheng J., Wei G., Zhou H. et al.: Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach. - Plant Physiol. 166: 1044-1058, 2014. Go to original source...
  11. Ciumãrnean L., Milaciu M.V., Runcan O. et al.: The effects of flavonoids in cardiovascular diseases. - Molecules 25: 4320, 2020. Go to original source...
  12. Clair R.S., Anthony M.: Soy, isoflavones and atherosclerosis. - In: von Eckardstein A. (ed.): Atherosclerosis: Diet and Drugs. Handbook of Experimental Pharmacology. Vol. 170. Pp. 301-323. Springer, Berlin-Heidelberg 2005. Go to original source...
  13. Constantinescu T., Lungu C.N.: Anticancer activity of natural and synthetic chalcones. - Int. J. Mol. Sci. 22: 11306, 2021. Go to original source...
  14. Cui L., Yao S., Dai X. et al.: Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). - J. Exp. Bot. 67: 2285-2297, 2016. Go to original source...
  15. Cushnie T.P.T., Lamb A.J.: Antimicrobial activity of flavonoids. - Int. J. Antimicrob. Ag. 26: 343-356, 2005. Go to original source...
  16. Devaiah S.P., Owens D.K., Sibhatu M.B. et al.: Identification, recombinant expression, and biochemical analysis of putative secondary product glucosyltransferases from Citrus paradisi. - J. Agr. Food Chem. 64: 1957-1969, 2016. Go to original source...
  17. Dias M.C., Pinto D.C.G.A, Silva A.M.S.: Plant flavonoids: chemical characteristics and biological activity. - Molecules 26: 5377, 2021. Go to original source...
  18. Falcone Ferreyra M.L., Rodriguez E., Casas M.I. et al.: Identification of a bifunctional maize C- and O-glucosyl­transferase. - J. Biol. Chem. 288: 31678-31688, 2013. Go to original source...
  19. Fan Z.-L., Wang Z.-Y., Zuo L.-L., Tian S.-Q.: Protective effect of anthocyanins from lingonberry on radiation-induced damages. - Int. J. Environ. Res. Pub. Health 9: 4732-4743, 2012. Go to original source...
  20. Ford C.M., Boss P.K., Hoj P.B.: Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. - J. Biol. Chem. 273: 9224-9233, 1998. Go to original source...
  21. Frydman A., Liberman R., Huhman D.V. et al.: The molecular and enzymatic basis of bitter/non-bitter flavor of citrus fruit: evolution of branch-forming rhamnosyltransferases under domestication. - Plant J. 73: 166-178, 2013. Go to original source...
  22. Frydman A., Weisshaus O., Bar-Peled M. et al.: Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. - Plant J. 40: 88-100, 2004. Go to original source...
  23. Fukuchi-Mizutani M., Okuhara H., Fukui Y. et al.: Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. - Plant Physiol. 132: 1652-1663, 2003. Go to original source...
  24. Griesser M., Hoffmann T., Bellido M.L. et al.: Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. - Plant Physiol. 146: 1528-1539, 2008b. Go to original source...
  25. Griesser M., Vitzthum F., Fink B. et al.: Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria × ananassa) achene and receptacle. - J. Exp. Bot. 59: 2611-2625, 2008a. Go to original source...
  26. Haddad A.Q., Venkateswaran V., Viswanathan L. et al.: Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. - Prostate Cancer Prostatic Dis. 9: 68-76, 2006. Go to original source...
  27. Hans J., Brandt W., Vogt T.: Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis. - Plant J. 39: 319-333, 2004. Go to original source...
  28. Härtl K., Huang F.-C., Giri A.P. et al.: Glucosylation of smoke-derived volatiles in grapevine (Vitis vinifera) is catalyzed by a promiscuous resveratrol/guaiacol glucosyltransferase. - J. Agr. Food Chem. 65: 5681-5689, 2017. Go to original source...
  29. Hashimoto F., Tanaka M., Maeda H. et al.: Changes in flower coloration and sepal anthocyanins of cyanic Delphinium cultivars during flowering. - Biosci. Biotech. Bioch. 66: 1652-1659, 2002. Go to original source...
  30. Hofer B.: Recent developments in the enzymatic O-glycosylation of flavonoids. - Appl. Microbiol. Biot. 100: 4269-4281, 2016. Go to original source...
  31. Hsu Y.-H., Tagami T., Matsunaga K. et al.: Functional characterization of UDP-rhamnose-dependent rhamnosyl­transferase involved in anthocyanin modification, a key enzyme determining blue coloration in Lobelia erinus. - Plant J. 89: 325-337, 2017. Go to original source...
  32. Ito T., Fujimoto S., Suito F. et al.: C-glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. - Plant J. 91: 187-198, 2017. Go to original source...
  33. Jaakola L.: New insights into the regulation of anthocyanin biosynthesis in fruits. - Trends Plant Sci. 18: 477-483, 2013. Go to original source...
  34. Jones P., Messner B., Nakajima J.-I. et al.: UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. - J. Biol. Chem. 278: 43910-43918, 2003. Go to original source...
  35. Kalpoutzakis E., Aligiannis N., Mitakou S., Skaltsounis A.-L.: Verbaspinoside, a new iridoid glycoside from Verbascum spinosum. - J. Nat. Prod. 62: 342-344, 1999. Go to original source...
  36. Kazuma K., Noda N., Suzuki M.: Flavonoid composition related to petal color in different lines of Clitoria ternatea. - Phytochemistry 64: 1133-1139, 2003. Go to original source...
  37. Kim I.A., Heo J.-O., Chang K.S. et al.: Overexpression and inactivation of UGT73B2 modulate tolerance to oxidative stress in Arabidopsis. - J. Plant Biol. 53: 233-239, 2010a. Go to original source...
  38. Kim J.M., Ko R.K., Jung D.S. et al.: Tyrosinase inhibitory constituents from the stems of Maackia fauriei. - Phytother. Res. 24: 70-75, 2010b. Go to original source...
  39. Knoch E., Sugawara S., Mori T. et al.: UGT79B31 is responsible for the final modification step of pollen-specific flavonoid biosynthesis in Petunia hybrida. - Planta 247: 779-790, 2018. Go to original source...
  40. Ko J.H., Kim B.G., Kim J.H. et al.: Four glucosyltransferases from rice: cDNA cloning, expression, and characterization. - J. Plant Physiol. 165: 435-444, 2008. Go to original source...
  41. Kogawa K., Kato N., Kazuma K. et al.: Purification and characterization of UDP-glucose: anthocyanin 3',5'-O-glucosyltransferase from Clitoria ternatea. - Planta 226: 1501-1509, 2007. Go to original source...
  42. Kondo T., Oyama K.I., Yoshida K.: Chiral molecular recognition on formation of a metalloanthocyanin: A supramolecular metal complex pigment from blue flowers of Salvia patens. - Angew. Chem. Int. Edit. 40: 894-897, 2001. Go to original source...
  43. Koshioka M., Umegaki N., Boontiang K. et al.: Anthocyanins in the bracts of Curcuma species and relationship of the species based on anthocyanin composition. - Nat. Prod. Commun. 10: 453-456, 2015. Go to original source...
  44. Kubo A., Arai Y., Nagashima S., Yoshikawa T.: Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. - Arch. Biochem. Biophys. 429: 198-203, 2004. Go to original source...
  45. Kumar R.J.S., Ruby, Singh S. et al.: Functional characterization of a glucosyltransferase specific to flavonoid 7-O-glucosides from Withania somnifera. - Plant Mol. Biol. Rep. 31: 1100-1108, 2013. Go to original source...
  46. Kurowska E.M., Manthey J.A.: Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. - J. Agr. Food Chem. 52: 2879-2886, 2004. Go to original source...
  47. Lee Y., Yoon H.R., Paik Y.S. et al.: Reciprocal regulation of Arabidopsis UGT78D2 and BANYULS is critical for regulation of the metabolic flux of anthocyanidins to condensed tannins in developing seed coats. - J. Plant Biol. 48: 356-370, 2005. Go to original source...
  48. Lewinsohn E., Britsch L., Mazur Y., Gressel J.: Flavanone glycoside biosynthesis in Citrus: chalcone synthase, UDP-glucose:flavanone-7-O-glucosyl-transferase and -rhamnosyl-transferase activities in cell-free extracts. - Plant Physiol. 91: 1323-1328, 1989. Go to original source...
  49. Li J., Li Z., Li C. et al.: Molecular cloning and characterization of an isoflavone 7-O-glucosyltransferase from Pueraria lobata. - Plant Cell Rep. 33: 1173-1185, 2014. Go to original source...
  50. Li P., Li Y.-J., Zhang F.-J. et al.: The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. - Plant J. 89: 85-103, 2017. Go to original source...
  51. Li Y., Li P., Zhang L. et al.: Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation. - Plant Sci. 321: 111314, 2022. Go to original source...
  52. Lim E.-K., Li Y., Parr A. et al.: Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. - J. Biol. Chem. 276: 4344-4349, 2001. Go to original source...
  53. Lin J.-S., Huang X.-X., Li Q. et al.: UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. - Plant J. 88: 26-42, 2016. Go to original source...
  54. Liu W., Feng Y., Yu S. et al.: The flavonoid biosynthesis network in plants. - Int. J. Mol. Sci. 22: 12824, 2021. Go to original source...
  55. Liu X., Lin C., Ma X. et al.: Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis). - Front. Plant Sci. 9: 166, 2018a. Go to original source...
  56. Liu Y., Zhou B., Qi Y. et al.: Biochemical and functional characterization of AcUFGT3a, a galactosyltransferase involved in anthocyanin biosynthesis in the red-fleshed kiwifruit (Actinidia chinensis). - Physiol. Plantarum 162: 409-426, 2018b. Go to original source...
  57. Loizzo M.R., Falco T., Bonesi M. et al.: Ruta chalepensis L. (Rutaceae) leaf extract: chemical composition, antioxidant and hypoglicaemic activities. - Nat. Prod. Res. 32: 521-528, 2018. Go to original source...
  58. Maleki S.J., Crespo J.F., Cabanillas B.: Anti-inflammatory effects of flavonoids. - Food Chem. 299: 125124, 2019. Go to original source...
  59. Masada S., Terasaka K., Oguchi Y. et al.: Functional and structural characterization of a flavonoid glucoside 1,6-glucosyltransferase from Catharanthus roseus. - Plant Cell Physiol. 50: 1401-1415, 2009. Go to original source...
  60. Masilamani M., Wei J., Sampson H.A.: Regulation of the immune response by soybean isoflavones. - Immunol. Res. 54: 95-110, 2012. Go to original source...
  61. Miles Z.D., Roberts S.A., McCarty R.M., Bandarian V.: Biochemical and structural studies of 6-carboxy-5,6,7,8-tetrahydropterin synthase reveal the molecular basis of catalytic promiscuity within the tunnel-fold superfamily. - J. Biol. Chem. 289: 23641-23652, 2014. Go to original source...
  62. Miller K.D., Guyon V., Evans J.N.S. et al.: Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. - J. Biol. Chem. 274: 34011-34019, 1999. Go to original source...
  63. Montefiori M., Espley R.V., Stevenson D. et al.: Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis). - Plant J. 65: 106-118, 2011. Go to original source...
  64. Mori M., Kondo T., Toki K., Yoshida K.: Structure of anthocyanin from the blue petals of Phacelia campanularia and its blue flower color development. - Phytochemistry 67: 622-629, 2006. Go to original source...
  65. Morita Y., Hoshino A., Kikuchi Y. et al.: Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2''-O-glucosyltransferase, due to 4-bp insertions in the gene. - Plant. J. 42: 353-363, 2005. Go to original source...
  66. Naing A.H., Kim C.K.: Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. - Physiol. Plantarum 172: 1711-1723, 2021. Go to original source...
  67. Ninfali P., Antonelli A., Magnani M., Scarpa E.S.: Antiviral properties of flavonoids and delivery strategies. - Nutrients 12: 2534, 2020. Go to original source...
  68. Nishizaki Y., Matsuba Y., Okamoto E. et al.: Structure of the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties. - Mol. Genet. Genomics 286: 383-394, 2011. Go to original source...
  69. Noguchi A., Horikawa M., Fukui Y. et al.: Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales. - Plant Cell 21: 1556-1572, 2009. Go to original source...
  70. Noguchi A., Saito A., Homma Y. et al.: A UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings. Purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. - J. Biol. Chem. 282: 23581-23590, 2007. Go to original source...
  71. Ogata J., Kanno Y., Itoh Y. et al.: Plant biochemistry: anthocyanin biosynthesis in roses. - Nature 435: 757-758, 2005. Go to original source...
  72. Okitsu N., Matsui K., Horikawa M. et al.: Identification and characterization of novel Nemophila menziesii flavone glucosyltransferases that catalyze biosynthesis of flavone 7,4'-O-diglucoside, a key component of blue metalloanthocyanins. - Plant Cell Physiol. 59: 2075-2085, 2018. Go to original source...
  73. Ono E., Homma Y., Horikawa M. et al.: Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). - Plant Cell 22: 2856-2871, 2010a. Go to original source...
  74. Ono E., Ruike M., Iwashita T. et al.: Co-pigmentation and flavonoid glycosyltransferases in blue Veronica persica flowers. - Phytochemistry 71: 726-735, 2010b. Go to original source...
  75. Osmani S.A., Bak S., Imberty A. et al.: Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. - Plant Physiol. 148: 1295-1308, 2008. Go to original source...
  76. Owens D.K., McIntosh C.A.: Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi. - Phytochemistry 70: 1382-1391, 2009. Go to original source...
  77. Pang Y., Peel G.J., Sharma S.B. et al.: A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. - PNAS 105: 14210-14215, 2008. Go to original source...
  78. Peng M., Shahzad R., Gul A. et al.: Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. - Nat. Commun. 8: 1975, 2017. Go to original source...
  79. Pietta P.-G.: Flavonoids as antioxidants. - J. Nat. Prod. 63: 1035-1042, 2000. Go to original source...
  80. Pollastri S., Tattini M.: Flavonols: old compounds for old roles. - Ann. Bot.-London 108: 1225-1233, 2011. Go to original source...
  81. Rice-Evans C.: Flavonoid antioxidants. - Curr. Med. Chem. 8: 797-807, 2001. Go to original source...
  82. Russo M., Moccia S., Spagnuolo C. et al.: Roles of flavonoids against coronavirus infection. - Chem. Biol. Interact. 328: 109211, 2020. Go to original source...
  83. Samarghandian S., Azimi-Nezhad M., Samini F., Farkhondeh T.: Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. - Can. J. Physiol. Pharmacol. 94: 388-393, 2016. Go to original source...
  84. Shamsudin N.F., Ahmed Q.U., Mahmood S. et al.: Flavonoids as antidiabetic and anti-inflammatory agents: a review on structural activity relationship-based studies and meta-analysis. - Int. J. Mol. Sci. 23: 12605, 2022. Go to original source...
  85. Shen T., Hu F., Liu Q. et al.: Analysis of flavonoid metabolites in Chaenomeles petals using UPLC-ESI-MS/MS. - Molecules 25: 3994, 2020. Go to original source...
  86. Slámová K., Kape¹ová J., Valentová K.: "Sweet flavonoids": Glycosidase-catalyzed modifications. - Int. J. Mol. Sci. 19: 2126, 2018. Go to original source...
  87. Son N.T, Suenaga M., Matsunaga Y. et al.: Serine protease inhibitors and activators from Dalbergia tonkinensis species. - J. Nat. Med. 74: 257-263, 2020. Go to original source...
  88. Sui X., Gao X., Ao M. et al.: cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in Freesia hybrida. - Plant Cell Rep. 30: 1209-1218, 2011. Go to original source...
  89. Sun W., Liang L., Meng X. et al.: Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida. - Front Plant Sci. 7: 410, 2016. Go to original source...
  90. Tanaka Y., Sasaki N., Ohmiya A.: Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. - Plant J. 54: 733-749, 2008. Go to original source...
  91. Tohge T., Nishiyama Y., Hirai M.Y. et al.: Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. - Plant J. 42: 218-235, 2005. Go to original source...
  92. Trapero A., Ahrazem O., Rubio-Moraga A. et al.: Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. - Plant Physiol. 159: 1335-1354, 2012. Go to original source...
  93. Vitale D.C., Piazza C., Melilli B. et al.: Isoflavones: estrogenic activity, biological effect and bioavailability. - Eur. J. Drug Metab. Ph. 38: 15-25, 2013. Go to original source...
  94. Vogt T., Jones P.: Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. - Trends Plant Sci. 5: 380-386, 2000. Go to original source...
  95. Vogt T., Taylor L.P.: Flavonol 3-O-glycosyltransferases associated with petunia pollen produce gametophyte-specific flavonol diglycosides. - Plant Physiol. 108: 903-911, 1995. Go to original source...
  96. Wang T.-Y., Li Q., Bi K.-S.: Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. - Asian J. Pharm. Sci. 13: 12-23, 2018. Go to original source...
  97. Wang Y., Li X.-B., Li J.-J. et al.: Fragmentation pathway comparison of 5,6,7,4'-tetrahydroxy-flavone and 5,6,7,4'-tetramethoxy-flavone by high resolution electrospray ionization tandem mass spectroscopy. - J. Chin. Mass Spectrom. Soc. 37: 385-392, 2016.
  98. Witte S., Moco S., Vervoort J. et al.: Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L. - Planta 229: 1135-1146, 2009. Go to original source...
  99. Xiao J.: Dietary flavonoid aglycones and their glycosides: Which show better biological significance? - Crit. Rev. Food Sci. Nutr. 57: 1874-1905, 2017.
  100. Xu D., Hu M.-J., Wang Y.-Q. et al.: Antioxidant activities of quercetin and its complexes for medicinal application. - Molecules 24: 1123, 2019. Go to original source...
  101. Yamazaki M., Yamagishi E., Gong Z. et al.: Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. - Plant Mol. Biol. 48: 401-411, 2002. Go to original source...
  102. Yin R., Han K., Heller W. et al.: Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. - New Phytol. 201: 466-475, 2014. Go to original source...
  103. Yin X., Komatsu S.: Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. - J. Proteomics 169: 225-232, 2017. Go to original source...
  104. Yonekura-Sakakibara K., Tohge T., Matsuda F. et al.: Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20: 2160-2176, 2008. Go to original source...
  105. Zeb N., Rashid M.H., Mubarak M.Q.E. et al.: Flavonol biosynthesis by nonheme iron dioxygenases: A computational study into the structure and mechanism. - J. Inorg. Biochem. 198: 110728, 2019. Go to original source...
  106. Zhang C., Liu Y., Liu X. et al.: Comprehensive review of recent advances in chiral A-ring flavonoid containing compounds: structure, bioactivities, and synthesis. - Molecules 28: 365, 2023. Go to original source...
  107. Zhang F., Guo H., Huang J. et al.: A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. - Sci. China Life Sci. 63: 1037-1052, 2020a. Go to original source...
  108. Zhang K., Sun Y., Li M., Long R.: CrUGT87A1, a UDP-sugar glycosyltransferases (UGTs) gene from Carex rigescens, increases salt tolerance by accumulating flavonoids for antioxidation in Arabidopsis thaliana. - Plant Physiol. Biochem. 159: 28-36, 2021. Go to original source...
  109. Zhang Q., Yang W., Liu J. et al.: Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship. - Oxid. Med. Cell. Longev. 2020: 4150897, 2020b. Go to original source...
  110. Zhao C.L., Chen Z.J., Bai X.S. et al.: Structure-activity relationships of anthocyanidin glycosylation. - Mol. Divers. 18: 687-700, 2014. Go to original source...
  111. Zheng L.T., Ock J., Kwon B.-M., Suk K.: Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. - Int. Immunopharmacol. 8: 484-494, 2008. Go to original source...
  112. Zhou Z.-G., Li D.-D., Chen Y. et al.: Discussion on the structural modification and anti-tumor activity of flavonoids. - Curr. Top. Med. Chem. 22: 561-577, 2022. Go to original source...