biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 69:77-87, 2025 | DOI: 10.32615/bp.2025.009

Efficient serological and molecular methods for the detection of tomato spotted wilt virus

Hana HOFFMEISTEROVÁ1, 2, Emad IBRAHIM2, Qinhai LIU3, Min ZHU3, Ladislav MENŠÍK4, Petr KOMÁREK5, Miroslav JURKA5, Xiaorong TAO3, Tomáš MORAVEC1, *, Jiban KUMAR KUNDU1, 2, *
1 Laboratory of Virology-Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague, Czech Republic
2 Plant Virus and Vector Interactions-Centre for Plant Virus Research, Czech Agrifood Research Center, Drnovská 507, 161 06 Prague, Czech Republic
3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
4 Division of Crop Management Systems, Czech Agrifood Research Center, Drnovská 507, 161 06 Prague, Czech Republic
5 Hanácká zemědělská společnost Jevíčko a.s., Třebovská 713, 569 43 Jevíčko, Czech Republic

Tomato spotted wilt virus (TSWV; species Orthotospovirus tomatomaculae, family Tospoviridae) (Kuhn et al., 2023), is a negative strand RNA-virus containing envelope structures, which makes it unique among plant viruses (de Haan et al., 1991). TSWV ranks among the most destructive plant viruses worldwide. First described in Australia in 1919, TSWV has since attained a global distribution, infecting over 1 000 plant species across more than 85 families, including key agricultural crops such as tomato (Solanum lycopersicum), pepper (Capsicum annuum), groundnut (Arachis hypogaea), and various ornamentals (Parrella et al., 2003; Pappu et al., 2009). Infected plants typically exhibit chlorotic or necrotic spots, wilting, stunted growth, and in severe cases, complete crop failure, resulting in considerable economic losses, particularly in Solanaceous and Asteraceous crops (Roselló et al., 1996; Latham and Jones, 1998).

Keywords: dot blot, immune capture-reverse transcription PCR, one-enzyme reverse transcription-PCR, recombinase polymerase amplification, tissue blot immunoassay, tomato spotted wilt virus.

Received: October 2, 2025; Revised: October 24, 2025; Accepted: November 11, 2025; Published online: November 27, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HOFFMEISTEROVÁ, H., IBRAHIM, E., LIU, Q., ZHU, M., MENŠÍK, L., KOMÁREK, P., ... KUMAR KUNDU, J. (2025). Efficient serological and molecular methods for the detection of tomato spotted wilt virus. Biologia plantarum69, Article 77-87. https://doi.org/10.32615/bp.2025.009
Download citation

References

  1. Adkins, S. (2000) Tomato spotted wilt virus - positive steps towards negative success. Molecular Plant Pathology, 1, 151-157. Go to original source...
  2. Boiteux, L.S. & de Ávila, A.C. (1994) Inheritance of a resistance specific to tomato spotted wilt tospovirus in Capsicum chinense 'PI 159236'. Euphytica, 75, 139-142. Go to original source...
  3. Boonham, N., Kreuze, J., Winter, S. et al. (2014) Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20-31. Go to original source...
  4. Brunelle, J.L. & Green, R. (2014) Coomassie blue staining. Methods in Enzymology, 541, 161-167. Go to original source...
  5. Caruso, A.G., Ragona, A., Agrò, G. et al. (2024) Rapid detection of tomato spotted wilt virus by real-time RT-LAMP and in-field application. Journal of Plant Pathology, 106, 697-712. Go to original source...
  6. Clark, M.F. & Adams, A.N. (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475-483. Go to original source...
  7. de Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D. & Goldbach, R. (1991) Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72, 2207-2216. Go to original source...
  8. Debreczeni, D.E., Ruiz-Ruiz, S., Aramburu, J. et al. (2011) Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan®MGB probes. Journal of Virological Methods, 176, 32-37. Go to original source...
  9. Dijkstra, J. & de Jager, C.P. (1998) Enzyme-linked immunosorbent assay. In: Dijkstra, J. & de Jager, C.P. (Eds.): Practical Plant Virology: Protocols and Exercises. Berlin-Heidelberg: Springer, pp. 348-362. Go to original source...
  10. Escalante, C., Sanz-Saez, A., Jacobson, A. et al. (2024) Plant virus transmission during seed development and implications to plant defense system. Frontiers in Plant Science, 15, 1385456. Go to original source...
  11. Filardo, F., Vukovic, P., Sharman, M., Gambley, C. & Campbell, P. (2022) Development of a novel tissue blot hybridization chain reaction for the identification of plant viruses. Plants, 11, 2325. Go to original source...
  12. Fox, A. & Mumford, R.A. (2017) Plant viruses and viroids in the United Kingdom: An analysis of first detections and novel discoveries from 1980 to 2014. Virus Research, 241, 10-18. Go to original source...
  13. Fu, R., Sha, Y., Xu, X. & Liu, S.-B. (2024) Advancements in the loop-mediated isothermal amplification technique for the rapid detection of plant viruses in various crops. Physiological and Molecular Plant Pathology, 130, 102229. Go to original source...
  14. Hoffmeisterová, H., Kratochvílová, K., Čeřovská, N. et al. (2022) One-enzyme RTX-PCR for the detection of RNA viruses from multiple virus genera and crop plants. Viruses, 14, 298. Go to original source...
  15. Hsu, H.-T. (2009) Development of enzyme linked, tissue blot and dot blot immunoassays for plant virus detection. In: Burns, R. (Ed.) Plant Pathology. Methods in Molecular Biology. Vol. 508. Totowa: Humana Press, pp. 15-25. Go to original source...
  16. Iturralde Martinez, J.F. & Rosa, C. (2023) Reverse transcriptase recombinase polymerase amplification for detection of tomato spotted wilt orthotospovirus from crude plant extracts. Scientific Reports, 13, 9024. Go to original source...
  17. Jaybhaye, S.G., Chavhan, R.L., Hinge, V.R., Deshmukh, A.S. & Kadam, U.S. (2024) CRISPR-Cas assisted diagnostics of plant viruses and challenges. Virology, 597, 110160. Go to original source...
  18. Juárez, I.D., Steczkowski, M.X., Chinnaiah, S., Rodriguez, A., Gadhave, K.R. & Kurouski, D. (2024) Using Raman spectroscopy for early detection of resistance-breaking strains of tomato spotted wilt orthotospovirus in tomatoes. Frontiers in Plant Science, 14, 1283399. Go to original source...
  19. Kersting, S., Rausch, V., Bier, F.F. & von Nickisch-Rosenegk, M. (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria Journal, 13, 99. Go to original source...
  20. Kikkert, M., van Poelwijk, F., Storms, M. et al. (1997) A protoplast system for studying tomato spotted wilt virus infection. Journal of General Virology, 78, 1755-1763. Go to original source...
  21. Kuhn, J.H., Abe, J., Adkins, S. et al. (2023) Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota). Journal of General Virology, 104, 001864. Go to original source...
  22. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. Go to original source...
  23. Latham, L.J. & Jones, R.A.C. (1998) Selection of resistance breaking strains of tomato spotted wilt tospovirus. Annals of Applied Biology, 133, 385-402. Go to original source...
  24. Lee, H.-J., Cho, I.-S., Ju, H.-J. & Jeong, R.-D. (2021) Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips. Molecular and Cellular Probes, 57, 101727. Go to original source...
  25. Lin, N.S. (1990) Immunological detection of plant viruses and a mycoplasmalike organism by direct tissue blotting on nitrocellulose membranes. Phytopathology, 80, 824. Go to original source...
  26. Llamas-Llamas, M.E., Zavaleta-Mejia, E., Gonzalez-Hernandez, V.A., Cervantes-Diaz, L., Santizo-Rincon, J.A. & Ochoa-Martinez, D.L. (1998) Effect of temperature on symptom expression and accumulation of tomato spotted wilt virus in different host species. Plant Pathology, 47, 341-347. Go to original source...
  27. Lobato, I.M. & O'Sullivan, C.K. (2018) Recombinase polymerase amplification: Basics, applications and recent advances. Trends in Analytical Chemistry, 98, 19-35. Go to original source...
  28. Mahas, A., Hassan, N., Aman, R. et al. (2021) LAMP-coupled CRISPR-Cas12a module for rapid and sensitive detection of plant DNA viruses. Viruses, 13, 466. Go to original source...
  29. Marlow, S.J. & Handa, A.K. (1987) Immuno slot-blot assay using a membrane which covalently binds protein. Journal of Immunological Methods, 101, 133-139. Go to original source...
  30. Martinelli, F., Scalenghe, R., Davino, S. et al. (2015) Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35, 1-25. Go to original source...
  31. Massart, S., Candresse, T., Gil, J. et al. (2017) A framework for the evaluation of biosecurity, commercial, regulatory, and scientific impacts of plant viruses and viroids identified by NGS technologies. Frontiers in Microbiology, 8, 45. Go to original source...
  32. Mensah, E.O., Oh, H., Song, J. & Baek, J. (2024) Exploring imaging techniques for detecting tomato spotted wilt virus (TSWV) infection in pepper (Capsicum spp.) germplasms. Plants, 13, 3447. Go to original source...
  33. Montero-Astúa, M., Ullman, D.E. & Whitfield, A.E. (2016) Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Virology, 493, 39-51. Go to original source...
  34. Mulholland, V. (2009) Immunocapture-PCR for plant virus detection. In: Burns, R. (Ed.) Plant Pathology. Methods in Molecular Biology. Vol. 508. Totowa: Humana Press, pp. 183-192. Go to original source...
  35. Mumford, R.A., Barker, I. & Wood, K.R. (1994) The detection of tomato spotted wilt virus using the polymerase chain reaction. Journal of Virological Methods, 46, 303-311. Go to original source...
  36. Nagata, T., Inoue-Nagata, A.K., van Lent, J., Goldbach, R. & Peters, D. (2002) Factors determining vector competence and specificity for transmission of Tomato spotted wilt virus. Journal of General Virology, 83, 663-671. Go to original source...
  37. Notomi, T., Okayama, H., Masubuchi, H. et al. (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, e63. Go to original source...
  38. Oliver, J.E. & Whitfield, A.E. (2016) The genus Tospovirus: emerging Bunyaviruses that threaten food security. Annual Review of Virology, 3, 101-124. Go to original source...
  39. Orecchio, C., Sacco Botto, C., Alladio, E., D'Errico, C., Vincenti, M. & Noris, E. (2025) Non-invasive and early detection of tomato spotted wilt virus infection in tomato plants using a hand-held Raman spectrometer and machine learning modelling. Plant Stress, 15, 100732. Go to original source...
  40. Pappu, H.R., Jones, R.A.C. & Jain, R.K. (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 141, 219-236. Go to original source...
  41. Parrella, G., Gognalons, P., Gebre-Selassiè, K., Vovlas, C. & Marchoux, G. (2003) An update of the host range of Tomato spotted wilt virus. Journal of Plant Pathology, 85, 227-264.
  42. Paul, R., Ostermann, E., Chen, Y. et al. (2021) Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases. Biosensors and Bioelectronics, 187, 113312. Go to original source...
  43. Piepenburg, O., Williams, C.H., Stemple, D.L. & Armes, N.A. (2006) DNA detection using recombination proteins. PLoS Biology, 4, e204. Go to original source...
  44. Roberts, C.A., Dietzgen, R.G., Heelan, L.A. & Maclean, D.J. (2000) Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. Journal of Virological Methods, 88, 1-8. Go to original source...
  45. Roselló, S., Díez, M.J. & Nuez, F. (1996) Viral diseases causing the greatest economic losses to the tomato crop. I. The Tomato spotted wilt virus - a review. Scientia Horticulturae, 67, 117-150. Go to original source...
  46. Ruark-Seward, C.L., Bonville, B., Kennedy, G. & Rasmussen, D.A. (2020) Evolutionary dynamics of Tomato spotted wilt virus within and between alternate plant hosts and thrips. Scientific Reports, 10, 15797. Go to original source...
  47. Rubio, L., Galipienso, L. & Ferriol, I. (2020) Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Frontiers in Plant Science, 11, 1092. Go to original source...
  48. Turina, M., Tavella, L. & Ciuffo, M. (2012) Tospoviruses in the Mediterranean area. Advances in Virus Research, 84, 403-437. Go to original source...
  49. Ullman, D.E., Whitfield, A.E. & German, T.L. (2005) Thrips and tospoviruses come of age: Mapping determinants of insect transmission. Proceedings of the National Academy of Sciences, 102, 4931-4932. Go to original source...
  50. Wang, D., Vinson, R., Holmes, M. et al. (2019) Early detection of Tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN). Scientific Reports, 9, 4377. Go to original source...
  51. Wang, H., Wu, X., Huang, X., Wei, S., Lu, Z. & Ye, J. (2022) Seed transmission of Tomato spotted wilt orthotospovirus in peppers. Viruses, 14, 1873. Go to original source...
  52. Wu, S., Yu, W., Fu, X. et al. (2024) Advances in virus detection techniques based on recombinant polymerase amplification. Molecules, 29, 4972. Go to original source...
  53. Zhang, W., Jiao, Y., Ding, C. et al. (2021) Rapid detection of tomato spotted wilt virus with Cas13a in tomato and Frankliniella occidentalis. Frontiers in Microbiology, 12, 745173. Go to original source...