Fulltext search in archive
Results 331 to 360 of 2229:
Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpeaD. Kaur, S. K. Grewal, J. Kaur, S. SinghBiologia plantarum 61:359-366, 2017 | DOI: 10.1007/s10535-016-0695-2 Proline is emerging as a critical component of drought tolerance and fine tuning of its metabolism under stress affects the plants sensitivity and response to stress. Thus the study was carried out to analyse the effect of water deficit on the proline content and principal enzymes involved in its synthesis (Δ1-pyrolline-carboxylate synthetase) and catabolism (proline dehydrogenase) at different developmental stages and in different organs (roots, nodules, leaves, pod wall, and seeds) of two chickpea (Cicer arietinum L.) cultivars differing in drought tolerance (drought tolerant ICC4958 and drought sensitive ILC3279). It was observed that increased Δ1-pyrolline-carboxylate synthetase activity under moderate stress in roots and nodules of ICC4958 caused an increase in proline content during initiation of reproductive development whereas increased proline dehydrogenase activity in nodules and leaves at this period helped to maintain reducing power and energy supply in tissues and proper seed development as seed biomass increased consistently up to maturity. On the other hand, roots and nodules of ILC3279 responded to stress by increasing proline content after the developmental phase of reproductive organs was over (near maturity) which negatively affected the response of pod wall to stress. Concurrent increase in activities of Δ1-pyrolline-carboxylate synthetase and proline dehydrogenase in pod wall of ILC3279 aggravated the oxidative stress and affected seed development as seed biomass initially increased rapidly under stress but was unaffected near maturity. |
Utilization of urea by leaves of bromeliad Vriesea gigantea under water deficit: much more than a nitrogen sourceA. Matiz, P. T. Mioto, M. P. M. Aidar, H. MercierBiologia plantarum 61:751-762, 2017 | DOI: 10.1007/s10535-017-0721-z Vriesea gigantea Gaudichaud is an epiphytic bromeliad with a high capacity to take up urea. In plants, urea is hydrolyzed by urease into ammonium and CO2, providing nitrogen to the plant. Most studies of urea nutrition have focused only on nitrogen metabolism, whereas scarce attention has been given to CO2 assimilation. Therefore, this study attempted to investigate whether urea could play an important role as a carbon source, which could be of a significant importance under water deficit conditions because of the limitation in atmospheric CO2 influx into the leaves due to stomatal closure. In this study, detached leaves of V. gigantea were exposed to water deficit and supplied with urea. The most photosynthetic parts of the leaf (mainly the apical leaf portion) showed higher urease activities and CO2 buildup near chloroplasts, particularly during the nighttime under water deficit conditions when compared to urea application without the water deficit. Moreover, part of the CO2 generated from urea hydrolysis was fixed into malate, probably via phosphoenolpyruvate carboxylase. Therefore, urea may contribute to the carbon balance of plants under water deficit conditions. Our data suggest that, besides being a source of nitrogen, urea might also be an important carbon source during CO2-limited conditions in leaves of epiphytic bromeliads. |
The impact of trans-zeatin O-glucosyltransferase gene over-expression in tobacco on pigment content and gas exchangeD. Haisel, R. Vaňková, H. Synková, J. PospíšilováBiologia plantarum 52:49-58, 2008 | DOI: 10.1007/s10535-008-0007-6 The responses of tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under constitutive or senescence-inducible promoter (35S:ZOG1 and SAG12:ZOG1) and of wild type (WT) plants to water stress and subsequent rehydration were compared. In plants sufficiently supplied with water, both transgenics have higher net photosynthetic rate (PN) in upper and middle leaves and higher stomatal conductance (gs) in middle leaves than WT. Water use efficiency (WUE = PN/E) was higher in both transgenics than in WT. During prolonged water stress, both PN and E declined to a similar extent in both transgenics and WT plants. However, 7 d after rehydration PN in SAG:ZOG (upper and middle leaves) and 35S:ZOG (upper leaves) was higher than that in WT plants. Increased content of endogenous CKs in 35S:ZOG plants did not prevent their response to ABA application and the results obtained did not support concept of CK antagonism of ABA-induced stomatal closure. The chlorophyll (Chl) a+b content was mostly higher in both transgenics than in WT. During water stress and subsequent rehydration it remained unchanged in upper leaves, decreased slightly in middle leaves only of WT, while rapidly in lower leaves. Total degradation of Chl, carotenoids and xanthophyll cycle pigments (XCP) was found under severe water stress in lower leaves. Carotenoid and XCP contents in middle and upper leaves mostly increased during development of water stress and decreased after rehydration. While β-carotene content was mostly higher in WT, neoxanthin content was higher in transgenics especially in 35S:ZOG under severe stress and after rehydration. The higher content of XCP and degree of their deepoxidation were usually found in upper and middle leaves than in lower leaves with exception of SAG:ZOG plants during mild water stress. |
Detection of DNA methylation pattern in thidiazuron-induced blueberry callus using methylation-sensitive amplification polymorphismA. Ghosh, A. U. Igamberdiev, S. C. DebnathBiologia plantarum 61:511-519, 2017 | DOI: 10.1007/s10535-016-0678-3 During the normal developmental process, programmed gene expression is an essential phenomenon in all organisms. In eukaryotes, DNA methylation plays an important role in the regulation of gene expression. The extent of cytosine methylation polymorphism was evaluated in leaf tissues collected from the greenhouse grown plants and in in vitro-derived callus of three lowbush and one hybrid blueberry genotypes, using methylation-sensitive amplification polymorphism (MSAP) technique. Callus formation started from the leaf segments after 4 weeks of culture on a thidiazuron (TDZ) containing medium. Maximum callus formation (98 %) was observed in the hybrid blueberry at 1.0 mg dm-3 TDZ. Although noticeable changes in cytosine methylation pattern were detected within the MSAP profiles of both leaf and callus tissues, methylation events were more polymorphic in calli than in leaf tissues. The number of methylated CCGG sites varied significantly within the genotypes ranging from 75 to 100 in leaf tissues and from 215 to 258 in callus tissues. Differences in the methylation pattern were observed not only in a tissue-specific manner but also within the genotype in a treatment specific manner. These results demonstrated the unique effect of TDZ and the tissue culture process on DNA methylation during callus development. |
Photosynthetic and leaf anatomical characteristics of Castanea sativa: a comparison between in vitro and nursery plantsP. L. Sáez, L. A. Bravo, K. L. Sáez, M. Sánchez-Olate, M. I. Latsague, D. G. RíosBiologia plantarum 56:15-24, 2012 | DOI: 10.1007/s10535-012-0010-9 The anatomic and functional leaf characteristics related to photosynthetic performance of Castanea sativa growing in vitro and in nursery were compared. The irradiance saturated photosynthesis in in vitro grown plantlets was significantly lower compared to nursery plants (65 vs. 722 μmol m-2 s-1). The maximum photosynthetic rate (PNmax) was 4.0 and 10.0 μmol(CO2) m-2 s-1 in in vitro microshoots and nursery plant leaves, respectively. Carboxylation efficiency (CE) and electron transport rate (ETR) were three-folds higher in nursery plants than in microshoots. The nonphotochemical quenching (NPQ) was saturated at 80 μmol m-2 s-1 in microshoots suggesting limited photoprotection by thermal dissipation. The microshoots had wide open, spherical stomata and higher stomatal density than nursery plants and they had almost no epicuticular wax. Consequently, the microshoots had high stomatal conductance and high transpiration rate. These anatomic and functional leaf characteristics are likely major causes of the low survival rates of plantlets after ex vitro transfer. |
Anatomy, photochemical activity, and DNA polymorphism in leaves of dwarf tomato irradiated with X-raysC. Arena, M. Turano, B. Hay Mele, P. R. Cataletto, M. Furia, M. Pugliese, V. De MiccoBiologia plantarum 61:305-314, 2017 | DOI: 10.1007/s10535-016-0668-5 The response of higher plants to ionising radiation depends on factors related to both radiation properties and plant features including species, cultivar, age, and structural complexity of the target organ. Adult plants of dwarf tomato were irradiated with different doses of X-rays to investigate possible variations in leaf morpho-anatomical traits, photosynthetic efficiency, and genomic DNA. In order to assess if and how responses depend on leaf developmental stage, we analysed two types of leaves; nearly mature leaves (L1) and actively developing leaves (L2), whose lamina size corresponded to 70 and 25 %, respectively, of the lamina size of the fully expanded leaves. The results show that the X-rays prevented full lamina expansion of the L2 leaves at all doses and induced early death of tissue of plants irradiated with doses higher than 20 Gy. Most anatomical modifications were not clearly dose-dependent and the radiation-induced increase in phenolic compounds was irrespective of dose. At high doses of X-rays (50 and 100 Gy), photochemical efficiency decreased significantly in both leaf types, whereas total chlorophyll content significantly decreased only in the L2 leaves. The random amplification of polymorphic DNA data show that the X-rays induced mutagenic effects in the L2 leaves even at low doses despite the absence of severe phenotypic alterations. Genetic structure found in the population of samples corroborates the results of anatomical and eco-physiological analyses: the 20 Gy dose seems to mark the threshold dose above which genetic alterations, structural anomalies, and perturbations in the photosynthetic apparatus become significant, especially in the actively expanding leaves. |
Characterization and functional analysis of transcription factor ZmEIL1 in maizeQ. L. Shi, Y. B. Dong, D. H. Qiao, Q. Zhou, L. Zhang, Z. Y. Ma, Y. L. LiBiologia plantarum 61:266-274, 2017 | DOI: 10.1007/s10535-017-0705-z As key nuclear transcription factors, the ethylene-insensitive3/EIN3-like (EIN3/EIL) proteins play important roles in ethylene signal transduction pathway in various plants. In order to better understand the role of EIN3/EILs, one EIN3-like gene (designated ZmEIL1) was isolated from maize (Zea mays L.). The full-length cDNA of ZmEIL1 was 1 999 bp in length and encoded 647 amino acids. Sequence comparison of ZmEIL1 protein with other EIN3/EILs proteins revealed high conservation of five α-helices that could form a V-shaped cleft in a 3-D model, just like AtEIL3 in Arabidopsis thaliana. This protein showed transcriptional activation and activation domain located on the 507 - 647 amino acids in yeast. Furthermore, ZmEIL1 could interact with ZmERF1 in the yeast systems, which was downstream response factor in ethylene signal transduction pathway. Its mRNA could be highly induced in maize seedlings by ethephon and 1-methylcyclopropene treatments. Meanwhile, ZmEIL1 showed relatively high expression at 20 d after pollination in maize kernel. These results show that ZmEIL1 played an important role in the growth and development by participating in ethylene signalling pathway in maize. |
BrEXL6, a GDSL lipase gene of Brassica rapa, functions in pollen developmentR. Ji, H. Wang, X. Xin, S. Peng, Y. Hur, Z. Li, H. FengBiologia plantarum 61:685-692, 2017 | DOI: 10.1007/s10535-017-0735-6 Multiple allele-inherited male sterility has been widely used by breeders of Brassica rapa L. ssp. pekinensis, but the molecular mechanisms of male sterility are not yet clear. In this study, we isolated the full-length cDNA of a new gene (not included in the Brassica database). This gene, comprising 1 054 bp, encodes a 39.99 kDa protein with a Gly-Asp- Ser-Leu (GDSL)-lipase domain that is a member of the lipolytic protein GDSL family. The sequence of candidate gene is the most similar to extracellular lipase 6 (EXL6) of Arabidopsis and was therefore designated BrEXL6 and submitted to NCBI (accession No. JX131630.1). Reverse transcription semi-quantitative PCR and Western blot analysis showed that BrEXL6 and its encoded protein were significantly more expressed in fertile buds than in sterile buds. Quantitative PCR and in situ hybridization showed that BrEXL6 was highly expressed in the anthers of fertile buds, especially anthers at the pollen-development stages, but only weakly expressed in other tissues and floral organs of fertile plants and whole sterile plants. These results suggest that BrEXL6 is a pollen development-related gene. The results of this study provide clues for understanding the mechanisms underlying multiple allele-inherited male sterility. |
Water use efficiency in the drought-stressed sorghum and maize in relation to expression of aquaporin genesS. A. Hasan, S. H. Rabei, R. M. Nada, G. M. AbogadallahBiologia plantarum 61:127-137, 2017 | DOI: 10.1007/s10535-016-0656-9 Zea mays L. is less tolerant to drought than Sorghum bicolor L. In the present study, we investigated the response of both plants to drought stress applied under field conditions by withholding water for 10 d. The plant growth in terms of shoot fresh and dry masses was more severely reduced in maize than in sorghum, consistently with reduction of leaf relative water content. Gas exchange was also more inhibited by drought in maize than in sorghum. The water use efficiency (WUE) of maize fluctuated during the day and in response to the drought stress. In contrast, sorghum was able to maintain a largely constant WUE during the day in the well-watered plants as well as in the stressed ones. Studying the expression of four aquaporin genes (PIP1;5, PIP1;6, PIP2;3, and TIP1;2) revealed that PIP1;5 in leaves and PIP2;3 in roots were highly responsive to drought in sorghum but not in maize, where they might have supported a greater water transport. The expression pattern of PIP1;6 suggests its possible role in CO2 transport in control but not droughty leaves of both the plants. TIP1;2 seemed to contribute to water transport in leaves of the control but not droughty plants. We conclude that PIP1;5 and PIP2;3 may have a prominent role in drought tolerance and maintenance of WUE in sorghum plants. |
Application of X-ray absorption near edge spectroscopy to the study of the effect of sulphur on selenium uptake and assimilation in wheat seedlingsQ. Q. Huang, Q. Wang, Y. N. Wan, Y. Yu, R. F. Jiang, H. F. LiBiologia plantarum 61:726-732, 2017 | DOI: 10.1007/s10535-016-0698-z Selenium (Se) is an essential trace element for humans and animals. A hydroponic experiment was performed to study the effects of sulphur (S) on Se uptake, translocation, and assimilation in wheat (Triticum aestivum L.) seedlings. Sulphur starvation had a positive effect on selenate uptake and the form of Se supplied greatly influenced Se speciation in plants. Compared with the control plants, Se uptake by the S-starved plants was enhanced by 4.81-fold in the selenate treatment, and selenate was readily transported from roots to shoots. By contrast, S starvation had no significant effect on selenite uptake, and selenite taken up by roots was rapidly converted to organic forms and tended to accumulate in roots. X-ray absorption near edge spectroscopy (XANES) analysis showed that organic forms of selenium, including selenocystine, Se-methyl-selenocysteine (MeSeCys), and selenomethionine-Se-oxide, were dominant in the plants exposed to selenite and accounted for approximately 90 % of the total Se. Whereas selenate remained as the dominant species in the roots and shoots exposed to selenate, with little selenate converted to selenite and MeSeCys. Besides, sulphur starvation increased the proportion of inorganic Se species in the selenate-supplied plants, but had no significant effects on Se speciation in plants exposed to selenite. The present study provides important knowledge to understand the associated mechanism of Se uptake and metabolism in plants. |
Two novel WRKY genes from Juglans regia, JrWRKY6 and JrWRKY53, are involved in abscisic acid-dependent stress responsesG. Y. Yang, W. H. Zhang, Y. D. Sun, T. T. Zhang, D. Hu, M. Z. ZhaiBiologia plantarum 61:611-621, 2017 | DOI: 10.1007/s10535-017-0723-x Genes encoding plant WRKY transcription factors are important for stress response. In the current study, two WRKY transcription factor genes (JrWRKY6 and JrWRKY53) were identified from walnut (Juglans regia L.), and their function and involvement in stress responses were characterized. Under NaCl stress, JrWRKY6 and JrWRKY53 were upregulated in a short time (within 6 h of seedling exposure to salt) except in roots, in which the highest induction occurred at 24 and 48 h of salt exposure. The gene expression patterns under polyethylene glycol stress were similar to those under NaCl stress. Under heat stress, both genes were induced in all tissues, except for JrWRKY6 in leaf tissue of seedlings treated for 24 and 48 h. Both genes were also induced in all plants exposed to cold stress, except for JrWRKY6 in root tissue of seedlings exposed for 6 h and JrWRKY53 in root tissue exposed for 48 h. JrWRKY6 and JrWRKY53 also showed varied responses to abscisic acid (ABA), with the maximum expression being for JrWRKY6 in the roots of plants treated for 1 h, and JrWRKY53 in the leaves of plants treated for 3 h. Furthermore, under NaCl, sorbitol, heat, cold, and ABA treatments, yeast cells transformed with JrWRKY6 and JrWRKY53 showed an improved growth activity and density relative to the empty-vector-containing control yeast. Moreover, JrWRKY6 or JrWRKY53 could bind to the W-box motif. These results suggest that JrWRKY6 and JrWRKY53 can response positively to abiotic stressors and improve the plant tolerance to salinity, osmotic stress, and abnormal temperatures in a mechanism that likely involves the ABA signalling pathway and W-box binding activity. |
Silicon modifies both a local response and a systemic response to mechanical stress in tobacco leavesR. Hajiboland, S. Bahrami-Rad, C. PoschenriederBiologia plantarum 61:187-191, 2017 | DOI: 10.1007/s10535-016-0633-3 Both lignin and silicon (Si) are major players in the resistance of plants to mechanical stress (MS). Focusing on the phenolic metabolism, here we studied the short-term effects of a local MS on tobacco (Nicotiana rustica L. cv. Basmas) plants with Si (+Si, 1 mM Na2SiO3) and without Si (‒Si) treatments in order to see how Si may modify local and systemic responses. One week after starting the Si treatment, a half of the plants were exposed to a mechanical pressure applying 980 Pa for 24 h on the upper side of the 3rd leaf of each plant (+MS). The rest of the plants remained unstressed (‒MS). Plants were harvested 24 h and 72 h after starting the MS and the leaves directly exposed to the mechanical stress (DMS) and those indirectly exposed to the mechanical stress (IMS) from below and above the DMS leaf were analyzed for phenolic metabolism along with the corresponding leaves from‒MS plants. In the DMS leaf, the activities of polyphenol oxidase, phenylalanine ammonia lyase, and cytosolic and covalently-bound peroxidases increased by the MS, while decreased by Si. In accordance with this in the DMS leaf, the content of soluble and cell wall-bound phenolics and lignin were enhanced by the MS but decreased by Si. Interestingly, Si influenced the pattern of response to the MS depending on whether the leaves were directly treated by the MS or not. Silicon treatment augmented MS-induced lignin accumulation in the DMS leaf while rather inhibited lignin formation in the IMS leaves. These data show that Si modified MS-mediated changes in the phenolic metabolism differently in local and systemic leaves. |
Protection of Artemisia annua roots and leaves against oxidative stress induced by arsenicA. Kumari, N. Pandey, S. Pandey-RaiBiologia plantarum 61:367-377, 2017 | DOI: 10.1007/s10535-016-0686-3 The present study was conducted to examine differential responses of roots and leaves of Artemisia annua to different arsenic concentrations (50, 100, and 150 μΜ) and treatment durations (1, 3, 5, or 7 d). The values of bioconcentration factor and translocation factor calculated on the basis of total As-accumulation in roots and shoots suggested that A. annua is a good As-accumulator. Above and below ground plant biomass was enhanced at 100 μΜ As but at 150 μΜ As was significantly reduced. As-treatment caused membrane damage more in the roots than in the leaves as reflected by higher degree of lipid peroxidation in the roots than in the leaves. In response to As stress, plants activated antioxidative defense for detoxification of induced reactive oxygen species (ROS), As sequestration via phytochelatins (PCS) as well as production of a wide range of secondary metabolites. All of them were activated differently in roots and leaves. Among enzymatic antioxidants, leaves significantly elevated superoxide dismutase (SOD), ascorbate peroxidase, and glutathione reductase, whereas in roots SOD, catalase, and peroxidase played significant role in ROS detoxification. Plants activated As-sequestration pathway through thiols, glutathione, and PCS and their respective genes were more induced in leaves than in roots. Further gas chromatography in tandem with mass spectroscopy analysis revealed differential modulation of secondary metabolites in leaves and roots to sustain As-stress. For example, roots synthesized linoleic acid (4.85 %) under As-treatment that probably stimulated stress-signalling pathways and in turn activated differential defense mechanisms in roots to cope up with the adverse effects of As. |
Genome-wide identification, classification, and expression analysis of the phytocyanin gene family in Phalaenopsis equestrisL. Xu, X. J. Wang, T. Wang, L. B. LiBiologia plantarum 61:445-452, 2017 | DOI: 10.1007/s10535-017-0716-9 Phytocyanins (PCs) are ancient blue copper-binding proteins in plants that bind to single type I copper atoms and function as electron transporters. PCs play an important role in plant development and stress resistance. Many PCs are considered to be chimeric arabinogalactan proteins (AGPs). Previously, 38, 62, and 84 PC genes were identified in Arabidopsis thaliana, Oryza sativa, and Brassica rapa, respectively. In this study, we identified 30 putative PC genes in the orchid Phalaenopsis equestris through comprehensive bioinformatics analysis. Based on phylogeny and motif constitution, the P. equestris phytocyanins (PePCs) were divided into five subclasses: 10 early nodulin-like proteins, 10 uclacyanin-like proteins, five stellacyanin-like proteins, four plantacyanin-like proteins, and one unknown protein. Structural and glycosylation predictions suggested that 16 PePCs were glycosylphosphatidylinositol-anchored proteins localized to the plasma membrane, 22 PePCs contain N-glycosylation sites, and 14 are chimeric AGPs. Phylogenetic analysis indicated that each subfamily was derived from a common ancestor before the divergence of monocot and dicot lineages and that the expansion of the PC subfamilies occurred after the divergence of orchids and Arabidopsis. The number of exons in PC genes was conserved. Expression analysis in four tissues revealed that nine PC genes were highly expressed in flowers, stems, and roots, suggesting that these genes play important roles in growth and development in P. equestris. The results of this study lay the foundation for further analysis of the functions of this gene family in plants. |
Selection of reference genes for quantitative real-time PCR in Casuarina equisetifolia under salt stressC. Fan, Z. Qiu, B. Zeng, Y. Liu, X. Li, G. GuoBiologia plantarum 61:463-472, 2017 | DOI: 10.1007/s10535-016-0670-y Real time quantitative PCR (qPCR) is widely used in gene expression analysis for its accuracy and sensitivity. Reference genes serving as endogenous controls are necessary for gene normalization. In order to select an appropriate reference gene to normalize gene expression in Casuarina equisetifolia under salt stress, 10 potential reference genes were evaluated using real time qPCR in the leaves and roots of plants grown under different NaCl concentrations and treatment durations. GeNorm, NormFinder, and BestKeeper analyses reveal that elongation factor 1-alpha (EF1α) and ubiquitin-conjugating enzyme E2 (UBC) were the most appropriate reference genes for real time qPCR under salt stress. However, β-tubulin (βTUB) and actin 7, which were widely used as reference genes in other plant species, were not always stably expressed. The combination of EF1α, UBC, uncharacterized protein 2, DNAJ homolog subfamily A member 2, and glyceraldehyde-3-phosphate dehydrogenase should be ideal reference genes for normalizing gene expression data in all samples under salt stress. It indicates the need for reference gene selection for normalizing gene expression in C. equisetifolia. In addition, the suitability of reference genes selected was confirmed by validating the expression of WRKY29-like and expansin-like B1. The results enable analysis of salt response mechanism and gene expression in C. equisetifolia. |
RNA-seq analysis reveals a key role of brassinolide-regulated pathways in NaCl-stressed cottonH. M. Shu, S. Q. Guo, Y. Y. Gong, L. Jiang, J. W. Zhu, W. C. NiBiologia plantarum 61:667-674, 2017 | DOI: 10.1007/s10535-017-0736-5 Brassinolide (BL) alleviates salt injury in cotton seedlings; however, little is known about the molecular mechanisms of this response. In this study, digital gene expression analysis was performed to better understand the regulatory pathways of BL in NaCl-stressed cotton (Gossypium hirsutum L.). Compared with control plants (CK), a total of 1 162 and 7 659 differentially expressed genes (DEGs) were detected in the leaves and roots of NaCl-treated plants, respectively. Most of the DEGs in NaCl-treated plants, compared to CK, were regulated by BL. Moreover, expression patterns of DEGs in BL+NaCl treated plants were similar to those in CK plants; however, the responses of DEGs in the leaves and roots of NaCl-treated plants to BL differed. In the roots, BL-regulated DEGs were involved in protein biosynthesis, whereas in the leaves, BL promoted photosynthesis in NaCl-stressed cotton. BL treatment also significantly increased the overall biomass, chlorophyll a + b content in leaves, and the protein content in roots in NaCl-stressed cotton. The downregulation of stress-responsive genes in BL+NaCl-stressed leaves was also found. These results suggest that BL can alleviate NaCl injury in cotton plants. |
Over-expression of CsGSTU promotes tolerance to the herbicide alachlor and resistance to Pseudomonas syringae pv. tabaci in transgenic tobaccoL. Lo Cicero, V. Catara, C. P. Strano, P. Bella, P. Madesis, A. R. Lo PieroBiologia plantarum 61:169-177, 2017 | DOI: 10.1007/s10535-016-0659-6 Glutathione transferases (GSTs) mainly catalyze the nucleophilic addition of glutathione to a large variety of hydrophobic molecules participating to the vacuole compartmentalization of many toxic compounds. In this work, the putative tolerance of transgenic tobacco plants over-expressing CsGSTU genes towards the chloroacetanilide herbicide alachlor was investigated. Our results show that the treatment with 0.0075 mg cm-3 of alachlor strongly affects the growth of both wild type and transformed tobacco seedlings with the sole exception of the transgenic lines overexpressing CsGSTU2 isoform that are barely influenced by herbicide treatment. In order to correlate the in planta studies with enzyme properties, recombinant CsGSTs were in vitro expressed and tested for GST activity using alachlor as substrate. The recombinant GSTU2 enzyme was twice more active than GSTU1 in conjugating alachlor to GSH thus indicating that CsGSTU2 might play a crucial role in the plant defense against the herbicide. Moreover, as a consequence of the infiltration with a bacterial suspension of the P. syringae pv. tabaci, transgenic tobacco plants but not wild type plants bestowed the capability to limit toxic metabolite diffusion through plant tissues as indicated by the absence of chlorotic halos formation. Consequently, the transgenic tobacco plants described in the present study might be utilized for phytoremediation of residual xenobiotics in the environment and might represent a model for engineering plants that resist to pathogen attack. |
Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiationA. Iranbakhsh, M. Ghoranneviss, Z. Oraghi Ardebili, N. Oraghi Ardebili, S. Hesami Tackallou, H. NikmaramBiologia plantarum 61:702-708, 2017 | DOI: 10.1007/s10535-016-0699-y The current research was carried out to reveal the possible impacts of cold plasma on growth and physiology of wheat, as a new approach in plant science. Short and long-term impacts of different types of plasma (nitrogen and helium) with surface power density of 0.4 W cm-2, exposure times (15, 30, 60, and 120 s), and repetitions (1, 2, and 4 times with 24 h intervals) were evaluated. Single-time applied helium or nitrogen derived plasma significantly promoted total root and shoot lengths, in contrast to four times application, and the root system was more sensitive than the shoot one. In addition, seedlings were more sensitive to nitrogen derived plasma, compared with helium. The physiological responses to plasma treatment were analyzed via protein assay and peroxidase or phenylalanine ammonia lyase (PAL) activities measurements. Plasma generated signaling molecules, especially ozone, nitric oxide, and/or UV radiation induced promotions in the peroxidase and PAL activities as well as increase in protein content in leaves, especially when times and/or repetitions increased. Plants were perished by the nitrogen derived plasma at the highest exposure time and number of repetitions. However, the seedlings with inhibited growth not only caught up control one month after, but even the growth rate and biomass accumulation in the shoot and leaves were accelerated. Increased leaf soluble phenol content was recorded in plasma treated seedlings, especially at longer times and more repetitions. |
Identification and expression analysis of seven MADS-box genes from Annona squamosaK. Liu, S. Feng, Y. Jiang, H. Li, S. Huang, J. Liu, C. YuanBiologia plantarum 61:24-34, 2017 | DOI: 10.1007/s10535-016-0688-1 MADS-box genes encode a family of transcription factors that regulate diverse growth and developmental processes in plants, including flowering. In this study, comprehensive characterization and expression profiling analyses of seven sugar apple (Annona squamosa L.) MADS-box genes were performed using rapid amplification of cDNA ends method. Domain and phylogenetic analyses grouped these seven MADS-box genes into six different clades and they showed high similarity with orthologs in Arabidopsis. Expression patterns of these MADS-box genes were investigated during different flower developmental stages and in various reproductive organs, including petal, stamen, sepal, and pistil. Most of the MADS-box genes studied were least expressed in the sepal and AsAGL67 and AsAGL80 expression was weak in all tissues. AsSEP1 and AsAGAMOUS showed highest expressions in the stamen and pistil, and AsAGL12 showed stamen-specific expression. Dynamic expression patterns of MADS-box genes in different reproductive stages suggest involvement in flower development. Interestingly, a number of these MADS-box genes showed responses to gibberellin, abscisic acid, and salicylic acid treatments, suggesting control of their expression by phytohormones. |
Effects of melatonin on photosynthetic performance and antioxidants in melon during cold and recoveryY. P. Zhang, S. J. Yang, Y. Y. ChenBiologia plantarum 61:571-578, 2017 | DOI: 10.1007/s10535-017-0717-8 Melatonin (MT), a tryptophan derivative, plays an important role in the function and survival of organisms. To better understand the role of MT in cold tolerance, the melon (Cucumis melo L.) were sprayed with various concentrations of MT (0, 50, 100, 200 or 400 μM), exposed to cold stress (day/night temperature of 12/6 °C) for 7 d, and then returned to optimal conditions (28/18 °C) for 7-d recovery. The foliar application of MT (especially 200 μM) significantly alleviated cold-induced growth suppression, and MT-treated plants recovered more quickly than untreated plants. Further, MT-treated plants had higher chlorophyll content, photosynthetic rate, stomatal conductance, as well as maximal quantum yield of photosystem (PS) II photochemistry, and efficiency of excitation energy capture of open PS II centres under cold stress than untreated plants. Furthermore, exogenous MT significantly reduced malondialdehyde content and markedly increased the activities of antioxidant enzymes superoxide dismutase (SOD), guaiacol peroxidase (POD), and catalase (CAT) under cold stress. MT also increased expression of antioxidant genes CmSOD, CmPOD, and CmCAT under cold stress. The results indicate that MT pretreatment alleviated the detrimental effects of cold stress and accelerateds the recovery mainly by enhancing photosynthesis and antioxidant capacity in melon leaves. |
Marker-free transgenic cucumber expressing Arabidopsis cbf1 gene confers chilling stress toleranceN. Gupta, M. Rathore, D. Goyary, N. Khare, S. Anandhan, V. Pande, Z. AhmedBiologia plantarum 56:57-63, 2012 | DOI: 10.1007/s10535-012-0016-3 Marker-free transgenic cucumber (Cucumis sativus L.) cv. Poinsett 76 SR plants were produced by Agrobacterium mediated transformation. A transformation efficiency of 1.62 was observed on using Agrobacterium tumefaciens strain LBA4404 harbouring Arabidopsis cbf1 gene driven by the inducible promoter RD29A in a binary vector system pCAMBIA. Transgene integration and single copy insert in transgenic cucumber was confirmed by polymerase chain reaction (PCR) and Southern blot analysis in T0 lines and also confirmed marker-free status in T1 generation. Transgene expression was confirmed by reverse transcription (RT)-PCR in T1 generation transgenic cucumber and advanced to T2 generation. Upon exposure to chilling stress (4 °C), the T2 generation transgenic plants survived up to 36 h; however, wild-type plants could not survive and gradually died. A significant decrease in membrane injury index (MII), increase in activities of antioxidant enzymes (SOD and CAT), free proline content and relative water content (RWC) in the leaves were observed in transgenic cucumber as compared to wild-type under chilling stress. Thus, the transgenic cucumber plants expressing Arabidopsis cbf1 gene conferred protection against chilling stress. |
Evaluation of different embryogenic systems for production of true somatic embryos in ArabidopsisK. Nowak, B. Wojcikowska, K. Szyrajew, M. D. GajBiologia plantarum 56:401-408, 2012 | DOI: 10.1007/s10535-012-0063-9 Somatic embryogenesis (SE) in Arabidopsis was induced using various systems, including auxin treatment of in vitro cultured explants (immature zygotic embryos, IZEs) and transgenic plants overexpressing embryogenesis-related transcription factors, e.g. LEC2 together with the GUS reporter gene under control of the auxin-induced DR5 promoter. The study indicated that the SE-systems used gave different embryogenic capacities for the production of true embryos. The highest ratio of true embryos (75 %) was found among embryo-like structures in transgenic seedlings overexpressing LEC2. Analysis of in vitro induced SE systems indicated that in somatic embryos produced in response to exogenous auxin treatment the formation of root poles is frequently disturbed. A lack of a properly formed root meristem was observed in 35-80 % of in vitro induced somatic embryos, in dependence on auxin concentration and duration of treatment. |
Engineering resistance against Tobacco streak virus (TSV) in sunflower and tobacco using RNA interferenceK. Pradeep, V. K. Satya, M. Selvapriya, A. Vijayasamundeeswari, D. Ladhalakshmi, V. Paranidharan, R. Rabindran, R. Samiyappan, P. Balasubramanian, R. VelazhahanBiologia plantarum 56:735-741, 2012 | DOI: 10.1007/s10535-012-0111-5 The coat protein (CP) gene of Tobacco streak virus (TSV) from sunflower (Helianthus annuus L.) was amplified, cloned and sequenced. A 421 bp fragment of the TSV coat protein gene was amplified and a gene construct encoding the hairpin RNA (hpRNA) of the TSV-CP sequence was made in the plasmid pHANNIBAL. The construct contains sense and antisense CP sequences flanking a 742 bp spacer sequence (Pdk intron) under the control of the constitutive CaMV35S promoter. A 3.6 kb Not I fragment containing the hpRNA cassette (TSV-CP) was isolated from pHANNIBAL and sub-cloned into the binary vector pART27. This chimeric gene construct was then mobilized into Agrobacterium tumefaciens strain LBA4404 via triparental mating using pRK2013 as a helper. Sunflower (cv. Co 4) and tobacco (cv. Petit Havana) plants were transformed with A. tumefaciens strain LBA4404 harbouring the hpRNA cassette and in vitro selection was performed with kanamycin. The integration of the transgene into the genome of the transgenic lines was confirmed by PCR analysis. Infectivity assays with TSV by mechanical sap inoculation demonstrated that both the sunflower and tobacco transgenic lines exhibited resistance to TSV infection and accumulated lower levels of TSV compared with non-transformed controls. |
Arabidopsis thaliana in vitro shoot regeneration is impaired by silencing of TIR1M. Qiao, Z. -J. Zhao, F. -N. XiangBiologia plantarum 56:409-414, 2012 | DOI: 10.1007/s10535-011-0233-1 Arabidopsis shoots regenerate from root explants through a two-step process consisting of pre-incubation on an auxin-rich callus induction medium (CIM), followed by transfer to a cytokinin-rich shoot induction medium (SIM). The auxin receptor gene TIR1 was up-regulated when explants were transferred to SIM. The CIM pre-incubation is required for its up-regulation. The tir1-1, TIR1 knockdown mutant, reduced the efficiency of shoot regeneration in tissue culture, while its over-expression mutant significantly improved efficiency. TIR1 promoter::GUS fusion analysis demonstrated that TIR1 expression was in the shoot and the newly emerging leaves. After 10 d on SIM, several cytokinin related genes (CDKB1;1, CKS1, IPT4 and ARR15), which associate with shoot regeneration, were up-regulated in plants over-expressing TIR1 and some of these were down-regulated in the tir1-1 mutant. Thus, TIR1 appears to be involved in regulating shoot regeneration. |
Production of human papillomavirus type 16 E7 oncoprotein fused with β-glucuronidase in transgenic tomato and potato plantsJ. Bříza, D. Pavingerová, J. Vlasák, V. Ludvíková, H. NiedermeierováBiologia plantarum 51:268-276, 2007 The human papillomavirus type 16 (HPV 16) oncogene E7 fused with the gene for β-glucuronidase (gus) was used in plant transformation experiments. The E7 gene modified for lower cancerogenicity and fused with the 5' end of the gus in cassettes with cauliflower mosaic virus 35S promoter and transcription terminator produced high contents of fusion proteins in potato protoplasts. Expression vectors harbouring E7 fusion cassettes were used for Agrobacterium tumefaciens LBA4404 mediated transformation of either potato (Solanum tuberosum L. cv. Bintje) or tomato (Lycopersicon esculentum Mill. cv. Moneymaker). A fusion gene was found in all rooted regenerants using polymerase chain reaction with primers providing amplified fragments from E7 and gus genes. GUS activity was revealed in all regenerants obtained. Nevertheless, the level of GUS expression in different constructs varied much more than in transient expression experiments with potato protoplasts. Especially, expression level in plants carrying vectors with the whole E7 gene fused with gus was lowered by 2-3 orders of magnitude comparing with fusion of the first 41 codons of E7 and gus. Southern hybridisation of 18 tomato and 23 potato regenerants revealed mostly multiple tandem integration of T-DNA into the plant genome and Western blot proved the presence of the fusion protein in 9 tomato and 11 potato plants out of 41 tested individuals. |
Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activityC. Zhang, Y. Song, F. Jiang, G. Li, Y. Jiang, C. Zhu, F. WenBiologia plantarum 56:742-748, 2012 | DOI: 10.1007/s10535-012-0117-z To induce virus resistance in tobacco and rice we constructed hairpin RNA expression system harbouring inverted repeat fragments of coat protein cDNA of Potato virus Y (PVY) or Rice stripe virus (RSV). These structures were driven by three promoters [cauliflower mosaic virus 35S (CaMV 35S), polyubiqutin gene of maize (Ubi), and Pharbitis nil leucine zipper gene (PNZIP)] which have different tissue-specific activity. PVY resistance ratios were 65.18, 24.33 and 83.54 % in transgenic tobacco plants harboring p35S-PVY, pUbi-PVY and pPNZIP-PVY. RSV resistance was 16.21, 28.61 and 29.33 % in transgenic rice plants harboring p35S-RSV, pUbi-RSV and pPNZIP-RSV. Northern blotting and GUS assay demonstrated that virus resistance levels were related to promoter activity. Therefore, choice of the more effective and tissue-specific promoter to reinforce transcription of hpRNAs will favour the cultivation of highly virusresistant transgenic plants. |
Improvement of protein quality in transgenic soybean plantsH. A. El-Shemy, M. M. Khalafalla, K. Fujita, M. IshimotoBiologia plantarum 51:277-284, 2007 | DOI: 10.1007/s10535-007-0055-3 Glycinin is one of the abundant storage proteins in soybean seeds. A modified Gy1 (A1aB1b) proglycinin gene with a synthetic DNA encoding four continuous methionines (V3-1) was connected between the hpt gene and the modified green fluorescent protein sGFP(S65T) gene, and a resultant plasmid was introduced into soybean by particle bombardment in order to improve nutritional value of its seeds. After the selection with hygromycin, the efficiency of gene introduction was evaluated. More than 60 % of the regenerated plants tolerant to hygromycin yielded the hpt and V3-1 fragment by polymerase chain reaction (PCR) analysis, and the expression of sGFP was detected in about 50 % of putative transgenic soybeans. Southern hybridization confirmed the presence of transgenes in T0 plants and the transgenic soybeans hybridized with the hpt and V3-1 genes were analyzed showed different banding patterns. Most of the transgenic plants were growing, flowering normally and produced seeds. Analysis of seed obtained from transgenic soybean plants expressing hpt and V3-1 genes showed higher accumulation of glycinin compared with non-transgenic plants. In addition, protein expression in transgenic soybean plants was observed by using 2D-electrophoresis. |
Expression of GFP-mTalin reveals an actin-related role for the Arabidopsis Class II formin AtFH12F. Cvrčková, M. Grunt, V. ŽárskýBiologia plantarum 56:431-440, 2012 | DOI: 10.1007/s10535-012-0071-9 Formins (FH2 proteins) are implicated in F-actin nucleation and other aspects of cytoskeletal organization. Plants possess two formin clades, relatively well-described Class I formins and so far poorly characterized Class II formins. Comparison of Class II formin genes of two Arabidopsis species, A. thaliana and A. lyrata, indicates dynamic evolution within the Class II formin clade. Disruption of an outlier A. thaliana Class II formin gene, AtFH12 (At1g42980), whose expression is induced by NaCl, produced only negligible phenotypic effects under a variety of conditions, including salt stress, suggesting functional redundancy among Class II formins. However, the same mutation massively aggravated toxic effects of the expression of a fluorescent actin marker, GFP-tagged mouse talin (GFP-mTalin), known to interfere with normal actin dynamics. Abnormal actin structures were observed in atfh12 mutants expressing GFP-mTalin as compared to wild type. This not only demonstrates an actin-associated function for AtFH12, but also documents the feasibility of using the heterologous actin marker to "stress-test" the actin cytoskeleton in phenotyping "weak" actin related mutant alleles. |
Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plantsM. V. Rajam, N. Chandola, P. Saiprasad Goud, D. Singh, V. Kashyap, M. L. Choudhary, D. SihachakrBiologia plantarum 51:135-141, 2007 | DOI: 10.1007/s10535-007-0026-8 We report here the development of transgenic tobacco plants with thaumatin gene of Thaumatococcus daniellii under the control of a strong constitutive promoter-CaMV 35S. Both polymerase chain reaction and genomic Southern analysis confirmed the integration of transgene. Transgenic plants exhibited enhanced resistance with delayed disease symptoms against fungal diseases caused by Pythium aphanidermatum and Rhizoctonia solani. The leaf extract from transgenic plants effectively inhibited the mycelial growth of these pathogenic fungi in vitro. The transgenic seeds exhibited higher germination percentage and seedling survival under salinity and PEG-mediated drought stress as compared to the untransformed controls. These observations suggest that thaumatin gene can confer tolerance to both fungal pathogens and abiotic stresses. |
Over-expressing GsGST14 from Glycine soja enhances alkaline tolerance of transgenic Medicago sativaZ. -Y. Wang, F. -B. Song, H. Cai, Y. -M. Zhu, X. Bai, W. Ji, Y. Li, Y. HuaBiologia plantarum 56:516-520, 2012 | DOI: 10.1007/s10535-012-0075-5 Glutathione-S-transferases (GSTs) are ubiquitous enzymes that play a key role in stress tolerance and cellular detoxification. The GST gene GsGST14 selected from the gene expression profiles of Glycine soja under alkaline stress was transformed into alfalfa (Medicago sativa L.). Transgenic alfalfa plants showed 1.73-1.99 times higher GST activity than wild-type plants. Transgenic alfalfa grew well in the presence of 100 mM NaHCO3, while wild-type plants exhibited chlorosis and stunted growth, even death. There were marked changes in malondialdehyde content and relative membrane permeability caused by alkaline stress in non-transgenic lines compared to transgenic lines. The results indicate that the gene GsGST14 could enhance alkaline resistance in transgenic alfalfa. |


