biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 44:435-438, 2001 | DOI: 10.1023/A:1012479718305

Hydraulic Properties of a Mangrove Avicennia Germinans as Affected by NaCl

M.A. Sobrado1
1 Laboratorio de Biología Ambiental de Plantas, Departamento de Biología de Organismos, Universidad Simón Bolívar, Caracas, Venezuela

Water transport was assessed in seedlings of the mangrove Avicennia germinans L. grown at 171 and 684 mol m-3 NaCl. Leaf specific conductivity declined by 25 % at high salinity. This was related to low specific conductivity, because Huber values remained similar. Leaves of A. germinans featured low internal conductance to water transport. This was lowered further under high salinity. Water transport constrains imposed by whole shoot and leaf blade at high salinity were balanced by stomatal regulation of water loss, which possibly maintain stem water potentials above embolisms levels.

Keywords: hydraulic conductance; leaf conductance; salinity; water relations
Subjects: Avicennia germinans; gas exchange, salt stress; leaf conductance, salt stress; mangrove, hydraulic conductance, NaCl stress; salt stress, hydraulic properties; stomatal conductance, salt stress

Published: September 1, 2001  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sobrado, M.A. (2001). Hydraulic Properties of a Mangrove Avicennia Germinans as Affected by NaCl. Biologia plantarum44(3), 435-438. doi: 10.1023/A:1012479718305
Download citation

References

  1. Alder, N.N., Sperry, J.S., Pockman, W.T.: Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient.-Oecologia 105: 293-301, 1996. Go to original source...
  2. Ball, M.C.: Comparative ecophysiology of mangrove forest and tropical lowland moist rainforest.-In: Mulkey, R.L., Smith, A.P. (ed.): Tropical Forest Plant Ecophysiology. Pp. 461-496. Chapman and Hall, New York 1996. Go to original source...
  3. Ball, M.C., Farquhar, G.D.: Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity conditions.-Plant Physiol 74: 7-11, 1984. Go to original source...
  4. Ball, M.C., Sobrado, M.A.: Ecophysiology of mangroves: challenges in linking physiological process with patterns in forest structure.-In: Press, M.C., Scholes, J.D., Barker, M.G. (ed.): Advances in Plant Physiological Ecology. Pp. 331-346. Blackwell Science, Oxford 1999.
  5. Clough, B.F., Sim, R.G.: Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapor pressure deficit.-Oecologia 79: 38-44, 1989. Go to original source...
  6. Cochard, H., Peiffer, M. Le Gall, K., Granier, A.: Developmental control of xylem hydraulic resistance and vulnerability to emboslisms in Fraxinus excelsior L.: impacts on water relations.-J. exp. Bot. 48: 655-663, 1997. Go to original source...
  7. Jones, H.G., Sutherland, R.A.: Stomatal control of xylem embolism.-Plant Cell Environ. 14: 607-612, 1991. Go to original source...
  8. Lin, G., Sternberg, L.: Differences in morphology, carbon isotope ratios, and photosynthesis between scrub and fringe mangroves in Florida, USA.-Aquat. Bot. 42: 303-313, 1992. Go to original source...
  9. Lu, P., Biron, P., Granier, A., Cochard, H.: Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation.-Ann. Sci. forest. 53: 113-121, 1996. Go to original source...
  10. Medina, E., Francisco, M.: Osmolality and Δ13C of leaf tissue of mangrove species from environments of contrasting rainfall and salinity.-Estuarine Coast Shelf Sci. 45: 337-344, 1997. Go to original source...
  11. Meinzer, F.C., Grantz, D.A.: Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity.-Plant Cell Environ. 13: 383-388, 1990. Go to original source...
  12. Patiño, S., Tyree, M.T., Herre, E.A.: Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama.-New Phytol. 129: 125-134, 1995. Go to original source...
  13. Saliendra, N.Z., Sperry, J.S., Comstock, J.: Influence of leaf water status on stomatal response to humidity, hydraulic conductance and soil drought in Betula occidentalis.-Planta 196: 357-366, 1995. Go to original source...
  14. Smith, J.A.C., Popp, M., Lüttge, U., Cram, W.J., Diaz, M., Griffith, H., Lee, H.S.J., Medina, E., Schäfer, C., Stimmel, K.H., Thonke, B.: Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. VI. Water relations and gas exchange of mangroves.-New Phytol. 11: 293-307, 1989. Go to original source...
  15. Sobrado, M.A.: Hydraulic conductance and water potential differences inside leaves of tropical evergreen and deciduous species.-Biol. Plant. 40: 633-637, 1998. Go to original source...
  16. Sobrado, M.A.: Drought effect on photosynthesis of the mangrove Aviennia germinans under contrasting salinities.-Trees 13: 125-130, 1999a. Go to original source...
  17. Sobrado, M.A.: Leaf photosynthesis of the mangrove Avicennia germinans as affected by NaCl.-Photosynthetica 36: 547-555, 1999b. Go to original source...
  18. Sobrado M.A.: Relation of water transport to leaf gas exchange properties in three mangrove species.-Trees 14: 258-262, 2000. Go to original source...
  19. Sobrado, M.A., Ball, M.C.: Light uses in relation to gain in the mangrove, Avicennia marina, under hypersaline conditions.-Aust. J. Plant Physiol. 26: 245-251, 1999. Go to original source...
  20. Sperry, J.S., Alder, N. N., Eastlack, S.E.: The effect of reduced hydraulic conductance on xylem cavitation.-J. exp. Bot. 44: 1075-1082, 1993. Go to original source...
  21. Sperry, J.S., Tyree, M.T., Donnelly, J.R. Vulnerability of xylem to embolism in a mangrove vs. an inland species of Rhizophoraceae.-Physiol. Plant. 74: 276-283, 1988. Go to original source...
  22. Suárez, N., Sobrado, M.A., Medina, E.: Salinity effects on the leaf water relations components and ion accumulation patterns in Avicennia germinans L. seedlings.-Oecologia 114: 299-304, 1998. Go to original source...
  23. Suárez, N., Sobrado, M.A.: Adjustments in leaf water relations of the mangrove, Avicennia germinans (L.) L., grown in a salinity gradient.-Tree Physiol. 20: 277-282, 2000. Go to original source...
  24. Tyree, M.T., Cheung, Y.N.S.: Resistance to water flow in Fagus grandifolia leaves.-Can. J. Bot. 55: 2591-2599, 1977. Go to original source...
  25. Tyree, M.T., Patiño, S., Bennik, J., Alexander, J.: Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field.-J. exp Bot. 46: 83-94, 1995. Go to original source...
  26. Tyree, M.T., Sinclair, B., Lu, P., Granier, A.: Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter.-Ann. Sci. forest. 50: 417-423, 1993. Go to original source...
  27. Tyree, M.T., Sobrado, M.A., Stratton, L.J., Becker, P.: Diversity of hydraulic conductance in leaves of temperate and tropical species: possible causes and consequences.-J. trop. Forest Sci. 11: 47-60, 1999.
  28. Yang, S., Tyree, M.T.: Hydraulic architecture of Acer saccharum and A. rubrum: comparison of branches and whole trees and the contribution of leaves to hydraulic resistance.-J. exp. Bot. 45: 179-186, 1994. Go to original source...
  29. Zotz, G, Tyree, M.T., Patiño, S., Carlton, M.R.: Hydraulic architecture and water use of selected species from a lower montane forest in Panama.-Trees 12: 302-309, 1998 Go to original source...