Biologia plantarum 63:448-454, 2019 | DOI: 10.32615/bp.2019.078
Multifunctional proline rich proteins and their role in regulating cellular proline content in plants under stress
- 1 Division of Crop Improvement, Indian Institute of Sugarcane Research, Lucknow, 226002, India
- 2 Division of Crop Improvement, Indian Institute of Vegetable Research, Varanasi, 221305, India
- 3 Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
Proline rich proteins (PRPs), earlier famous as animal salivary proteins, have now been proven as indispensable plant proteins. They are highly rich in proline amino acid residues at the N-terminus whereas a characteristic eight cysteine motif is located at the C-terminus. The PRPs support a number of developmental processes from germination to plant death. Under normal environmental conditions, PRP genes express customarily in different plant parts depending on the specific function to be carried out. During abiotic stresses, PRP genes exhibit an uneven pattern of transcriptional regulation depending on the time and intensity of stress. Transgenic plants overexpressing PRP genes show an enhanced tolerance to abiotic stresses. This review focuses on contemporary functions of PRPs during stresses and proposes that PRPs are involved in the regulation of free cellular proline content during stress in a well synchronized manner.
Keywords: abiotic and biotic stresses, PRP genes, transgenic plants
Received: January 18, 2019; Accepted: January 15, 2019; Published online: June 14, 2019 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
| Download file | GUJJAR5876 Suppl.pdf File size: 1.13 MB |
References
- Barnett, N.M., Naylor, A.W.: Amino acid and protein metabolism in Bermuda grass during water stress. - Plant Physiol. 41: 1222-1230, 1966.
Go to original source... - Barthakur, S., Babu, V., Bansal, K.C.: Over-expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. - J. Plant Biochem. Biotechnol. 10: 31-37, 2001.
Go to original source... - Battaglia, M., Solorzano, R.M., Hernandez, M., Cuellar-Ortiz, S., Garcia-Gomez, B., Marquez, J., Covarrubias, A.A.: Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. - Planta 225: 1121-1133, 2007.
Go to original source... - Boron, A.K., Orden, J.V., Markakis, M.N., Mouille, G., Adriaensen, D., Verbelen, J., Hofte, H., Vissenberg, K.: Proline-rich protein-like PRPL1 controls elongation of root hairs in Arabidopsis thaliana. - J. exp. Bot. 65: 5485-5495, 2014.
Go to original source... - Bouton, S., Viau, L., Lelievre, E., Limami, A.M.: A gene encoding a protein with a proline-rich domain (MtPPRD1), revealed by suppressive subtractive hybridization (SSH), is specifically expressed in the Medicago truncatula embryo axis during germination. - J. exp. Bot. 56: 825-832, 2005.
Go to original source... - Cecchini N.M., Steffes, K., Schläppi, M.R., Gifford, A.N., Greenberg, J.T.: Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. - Nat. Commun. 23: 6, 2015.
Go to original source... - Chen, D., Kessler, B., Monselise, S.P.: Studies on water regime and nitrogen metabolism of citrus seedlings grown under water stress. - Plant Physiol. 39: 379-386, 1964.
Go to original source... - Chen, J., Zhao, J., Ning, J., Liu, Y., Xu, J., Tian, S., Zhang, L., Sun, M.X.: NtProRP1, a novel proline-rich protein, is an osmotic stress-responsive factor and specifically functions in pollen tube growth and early embryogenesis in Nicotiana tabacum. - Plant Cell Environ. 37: 499-511, 2014.
Go to original source... - Deutch, C.E., Winicov, I.: Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. - Plant mol. Biol. 27: 411-418, 1995.
Go to original source... - Dvorakova, L., Cvrckova, F., Fischer, L.: Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns. - BMC Genom. 8: 412, 2007.
Go to original source... - Dvorakova, L., Srba, M., Opatrny, Z., Fischer, L.: Hybrid proline-rich proteins: novel players in plant cell elongation? - Ann. Bot. 109: 453-462, 2012.
Go to original source... - Edstam, M.M., Viitanen, L., Salminen, T.A., Edqvist, J.: Evolutionary history of the non-specific lipid transfer proteins. - Mol. Plant 4: 947-964, 2011.
Go to original source... - Esen, A., Bietz, J.A., Paulis, J.W., Wall, J.S.: Tandem repeats in the N-terminal sequence of a proline-rich protein from corn endosperm. - Nature 296: 678-679, 1982.
Go to original source... - Fowler, T.J., Bernhardt, C., Tierney, M.L.: Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. - Plant Physiol. 121: 1081-1091, 1999.
Go to original source... - Francisco, S.M.K., Tierney, M.L.: Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. - Plant Physiol. 94: 1897-1902, 1990.
Go to original source... - Gothandam, K.M., Nalini, E., Karthikeyan, S., Shin, J.S.: OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. - Plant mol. Biol. 72: 125-135, 2010.
Go to original source... - Gujjar, R.S., Akhtar, M., Rai, A., Singh, M.: Expression analysis of drought induced genes in wild tomato line (Solanum habrochaites). - Curr. Sci. 107: 496-502, 2014.
- Gujjar, R.S., Karkute, S.G., Rai, A., Singh, M., Singh, B.: Proline-rich proteins may regulate free cellular proline levels during drought stress in tomato. - Curr. Sci. 114: 915-920, 2018.
Go to original source... - Hare, P., Cress, W.: Metabolic implications of stress induced proline accumulation in plants. - Plant Growth Regul. 21: 79-102, 1997.
Go to original source... - Hare, P.D., Cress, W.A., Van-Staden, J.: A regulatory role for proline metabolism in stimulating Arabidopsis thaliana seed germination. - Plant Growth Regul. 39: 41-50, 2003.
Go to original source... - Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A.: Role of proline under changing environments: a review. - Plant Signal. Behav. 7: 1456-1466, 2012.
Go to original source... - He, C.Y., Zhang, J.S., Chen, S.Y.: A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. - Theor. appl. Genet. 104: 1125-1131, 2002.
Go to original source... - Hong, J.C., Nagao, R.T., Key, J.L.: Developmentally regulated expression of soybean proline-rich cell wall protein genes. - Plant Cell 1: 937-943, 1989.
Go to original source... - Hong, J.C., Nagao, R.T., Key, J.L.: Characterization of a proline-rich cell wall protein gene family of soybean. A comparative analysis. - J. biol. Chem. 265: 2470-2475, 1990.
Go to original source... - Hua, X.J., Van-de-Cotte, B., Van-Montagu, M., Verbruggen, N.: Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis. - Plant Physiol. 114: 1215-1224, 1997.
Go to original source... - José-Estanyol, M., Gomis-Rüth, F.X., Puigdomènech, P.: The eight-cysteine motif, a versatile structure in plant proteins. - Plant Physiol. Biochem. 42: 355-365, 2004.
Go to original source... - Kant, S., Kant, P., Raveh, E., Barak, S.: Evidence that differential gene expression between the halophyte Thellungiella halophila and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. - Plant Cell Environ. 29: 1220-1234, 2006.
Go to original source... - Kishor, P.K., Hong, Z., Miao, G.H., Hu, C.A., Verma, D.P.: Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. - Plant Physiol. 108: 1387-1394, 1995.
Go to original source... - Kishor, P.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. - Curr. Sci. 88: 424-438, 2005.
- Lamport, D.T.A.: Isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. - Biochemistry 8: 1155-1163, 1969.
Go to original source... - Li, B.C., Zhang, C., Chai, Q.X., Han, Y.Y., Wang, X.Y., Liu, M.X., Feng, H., Xu, Z.Q.: Plasmalemma localisation of double hybrid proline-rich protein 1 and its function in systemic acquired resistance of Arabidopsis thaliana. - Funct. Plant Biol. 41: 768-779, 2014.
Go to original source... - Liu, A., Yu, Y., Li, R., Duan, X., Zhu, D., Sun, X., Duanmu, H., Zhu, Y.: A novel hybrid proline-rich type gene GsEARLI17 from Glycine soja participated in leaf cuticle synthesis and plant tolerance to salt and alkali stresses. - Plant Cell Tissue Organ Cult. 121: 633-646, 2015.
Go to original source... - Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J.I., Damsz, B., Narasimhan, M.L., Hasegawa, P.M., Joly, R.J., Bressan, R.A.: Does proline accumulation play an active role in stress-induced growth reduction? - Plant J. 31: 699-712, 2002.
Go to original source... - Mani, S., Van-de-Cotte, B., Van-Montagu, M., Verbruggen, N.: Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. - Plant Physiol. 128: 73-83, 2002.
Go to original source... - Matysik, J., Bhalu, B., Mohanty, P.: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. - Curr. Sci. 82: 525-532, 2002.
- Mellacheruvu, S., Tamirisa, S., Vudem, D.R., Khareedu, V.R.: Pigeonpea hybrid-proline-rich protein (CcHyPRP) confers biotic and abiotic stress tolerance in transgenic rice. - Front. Plant Sci. 6: 1167, 2016.
Go to original source... - Menke, U., Renault, N., Mueller-Roeber, B.: StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline-rich proteins. - Plant Physiol. 122: 677-686, 2000.
Go to original source... - Meringer, M.V., Villasuso, A.L., Margutti, M.P., Usorach, J., Pasquare, S.J., Giusto, N.M., Machado, E.E., Racagni, G.E.: Saline and osmotic stresses stimulate PLD/diacylglycerol kinase activities and increase the level of phosphatidic acid and proline in barley roots. - Environ. exp. Bot. 128: 69-78, 2016.
Go to original source... - Mishra, S., Dubey, R.S.: Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. - J. Plant Physiol. 163: 927-936, 2006.
Go to original source... - Nanjo, T., Fujita, M., Seki, M., Kato, T., Tabata, S., Shinozaki, K.: Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. - Plant Cell Physiol. 44: 541-548, 2003.
Go to original source... - Nieuwland, J., Feron, R., Huisman, B.A., Fasolino, A., Hilbers, C.W., Derksen, J., Mariani, C.: Lipid transfer proteins enhance cell wall extension in tobacco. - Plant Cell 17: 2009-2019, 2005.
Go to original source... - Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K., Iida, K.: Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. - Plant J. 34: 868-887, 2003.
Go to original source... - Peng, T., Jia, M.M., Liu, J.H.: RNAi-based functional elucidation of PtrPRP, a gene encoding a hybrid proline rich protein, in cold tolerance of Poncirus trifoliata. - Front. Plant Sci. 6: 808, 2015.
Go to original source... - Perez-Arellano, I., Carmona-Alvarez, F., Martinez, A.I., Rodriguez-Diaz, J., Cervera, J.: Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. - Protein Science 19: 372-382, 2010.
Go to original source... - Pitzschke, A., Xue, H., Persak, H., Datta, S., Seifert, G.J.: Post-translational modification and secretion of azelaic acid induced 1 (AZI1), a hybrid proline-rich protein from Arabidopsis. - Int. J. mol. Sci. 17: 85, 2016.
Go to original source... - Priyanka, B., Sekhar, K., Reddy, V.D., Rao, K.V.: Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. - Plant Biotechnol. J. 8: 76-87, 2010.
Go to original source... - Qin, L.X., Zhang, D.J., Huang, G.Q., Li, L., Li, J., Gong, S.Y., Li, X.B., Xu, W.L.: Cotton GhHyPRP3 encoding a hybrid proline rich protein is stress inducible and its overexpression in Arabidopsis enhances germination under cold temperature and high salinity stress conditions. - Acta Physiol. Plant. 35: 1531-1542, 2013.
Go to original source... - Rajendrakumar, C.S., Reddy, B.V., Reddy, A.R.: Proline-protein interactions: protection of structural and functional integrity of M4 lactate dehydrogenase. - Biochem. biophys. Res. Commun. 201: 957-963, 1994.
Go to original source... - Rentsch, D., Hirner, B., Schmelzer, E., Frommer, W.B.: Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. - Plant Cell 8: 1437-1446, 1996
Go to original source... - Ridge, I., Osborne, D.J.: Hydroxyproline and peroxidases in cell walls of Pisum sativum: regulation by ethylene. - J. exp. Bot. 21: 843-856, 1970.
Go to original source... - Schwacke, R., Grallath, S., Breitkreuz, K.E., Stransky, E., Stransky, H., Frommer, W.B., Rentsch, D.: LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. - Plant Cell 11: 377-392, 1999.
Go to original source... - Sharma, P., Dubey, R.S.: Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. - J. Plant Physiol. 162: 854-864, 2005.
Go to original source... - Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. - Phytochemistry 28: 1057-1060, 1989.
Go to original source... - Stines, A.P., Naylor, D.J., Hoj, P.B., Heeswijack, R.: Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of delta1-pyrroline-5-carboxylate synthetase mRNA or protein. - Plant Physiol. 120: 923-923, 1999.
Go to original source... - Szabados, L. Savoure, A.: Proline: a multifunctional amino acid. - Trends Plant Sci. 15: 89-97, 2010.
Go to original source... - Thompson, J.F., Stewart, C.R., Morris, C.J.: Changes in amino acid content of excised leaves during incubation. I. The effect of water content of leaves and atmospheric oxygen level. - Plant Physiol. 41: 1578-84, 1966.
Go to original source... - Verbruggen, N., Hermans, C.: Proline accumulation in plants: a review. - Amino Acids 35: 753-759, 2008.
Go to original source... - Verslues, P.E., Sharma, S.: Proline metabolism and its implications for plant-environment interaction. - Arabidopsis Book 8: e0140, 2010.
Go to original source... - Wyatt, R.E., Nagao, R.T., Key, J.L.: Patterns of soybean proline-rich protein gene expression. - Plant Cell 4: 99-110, 1992.
Go to original source... - Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y.: Effects of free proline accumulation in petunias under drought stress. - J. exp. Bot. 56: 1975-1981, 2005.
Go to original source... - Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y.: The I-TASSER suite: protein structure and function prediction. - Nature Methods 12: 7-8, 2015.
Go to original source... - Yeom, S.I., Seo, E., Oh, S.K., Kim, K.W., and Choi, D.: A common plant cell-wall protein HyPRP1 has dual roles as a positive regulator of cell death and a negative regulator of basal defense against pathogens. - Plant J. 69: 755-768, 2012.
Go to original source... - Zhan, X., Wang, B., Li, H., Liu, R., Kalia, R.K., Zhu, J.K., Chinnusamy, V.: Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. - Proc. nat. Acad. Sci. USA 109: 18198-18203, 2012.
Go to original source...



